《山东省惠民县2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省惠民县2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积约为250000m2,则250000用科学记数法表示为( )A25104m2B0.25106m2C2.5105m2D2.5106m22在平面直角坐标系中,点(-1,-2)所在
2、的象限是()A第一象限B第二象限C第三象限D第四象限3某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是()A50和48B50和47C48和48D48和434下列运算,结果正确的是()Am2+m2=m4B2m2nmn=4mC(3mn2)2=6m2n4D(m+2)2=m2+45如图,两个一次函数图象的交点坐标为,则关于x,y的方程组的解为( ) ABCD6若分式有意义,则a的取值范围是()Aa1Ba0Ca1且a0D一切实数7如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有、的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取
3、走的正方体是()ABCD8如图所示的几何体的主视图是( )ABCD9如图,AB切O于点B,OA2,AB3,弦BCOA,则劣弧BC的弧长为()ABCD10如图在ABC中,ACBC,过点C作CDAB,垂足为点D,过D作DEBC交AC于点E,若BD6,AE5,则sinEDC的值为()ABCD11如图,点A为边上任意一点,作ACBC于点C,CDAB于点D,下列用线段比表示sin的值,错误的是()ABCD12已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )ABCD二、填空题:(本
4、大题共6个小题,每小题4分,共24分)13分解因式x2x=_14已知整数k5,若ABC的边长均满足关于x的方程,则ABC的周长是 15如图,在ABC中,ACB=90,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tanCBD=,则BD=_16如图,在ABC中,ABAC,AHBC,垂足为点H,如果AHBC,那么sinBAC的值是_17如图,将量角器和含30角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm刻度线与量角器的0线在同一直线上,且直径DC是直角边BC的两倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E在量角器上所对应的度数是_.18在RtABC纸片上剪出7个如图所示的
5、正方形,点E,F落在AB边上,每个正方形的边长为1,则RtABC的面积为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,一次函数ykxb的图象与反比例函数y的图象交于点A(3,m8),B(n,6)两点(1)求一次函数与反比例函数的解析式;(2)求AOB的面积20(6分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点动点C、D分别在直线AB、OB上,将BCD沿着CD折叠,得BCD()如图1,若CDAB,点B恰好落在点A处,求此时点D的坐标;()如图2,若BD=AC,点B恰好落在y轴上,求此时点C的坐标;()若点C
6、的横坐标为2,点B落在x轴上,求点B的坐标(直接写出结果即可)21(6分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为 ;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆心角为 度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?22(8分)如图,BD是矩形ABCD的一条对角线(1)作BD的垂直平分线E
7、F,分别交AD、BC于点E、F,垂足为点O(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF23(8分)先化简,再求值:,其中a为不等式组的整数解24(10分)如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接DE,AC(1)求证:四边形ACDE为平行四边形;(2)连接CE交AD于点O,若AC=AB=3,cosB=,求线段CE的长25(10分)解分式方程: -1=26(12分)已知RtABC,A=90,BC=10,以BC为边向下作矩形BCDE,连AE交BC于F.(1)如图1,当AB=AC,且sinBEF=时,求的值;(2)如图2,当tanABC=时,过
8、D作DHAE于H,求的值;(3)如图3,连AD交BC于G,当时,求矩形BCDE的面积27(12分)解方程:1+参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】科学记数法的表示形式为a10n,其中1|a|10,n为整数【详解】解:由科学记数法可知:250000 m2=2.5105m2,故选C【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键2、C【解析】:点的横纵坐标均为负数,点(-1,-2)所在的象限是第三象限,故选C3、A【解析】由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.
9、【详解】由折线统计图,得:42,43,47,48,49,50,50,7次测试成绩的众数为50,中位数为48,故选:A【点睛】本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.4、B【解析】直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案【详解】A. m2+m2=2m2,故此选项错误;B. 2m2nmn=4m,正确;C. (3mn2)2=9m2n4,故此选项错误;D. (m+2)2=m2+4m+4,故此选项错误.故答案选:B.【点睛】本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和
10、单项式除以单项式运算法则.5、A【解析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案【详解】解:直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),二元一次方程组的解为故选A.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式函数图象交点坐标为两函数解析式组成的方程组的解6、A【解析】分析:根据分母不为零,可得答案详解:由题意,得,解得 故选A.点睛:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键7、A【解析】根据题意得到原几何体的主视
11、图,结合主视图选择【详解】解:原几何体的主视图是:视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可故取走的正方体是故选A【点睛】本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.8、C【解析】主视图就是从正面看,看列数和每一列的个数.【详解】解:由图可知,主视图如下故选C【点睛】考核知识点:组合体的三视图.9、A【解析】试题分析:连接OB,OC,AB为圆O的切线,ABO=90,在RtABO中,OA=,A=30,OB=,AOB=60,BCOA,OBC=AOB=60,又OB=OC,BOC为等边三角形,BOC=60,则劣弧长为故选A.考点: 1.切
12、线的性质;2.含30度角的直角三角形;3.弧长的计算10、A【解析】由等腰三角形三线合一的性质得出AD=DB=6,BDC=ADC=90,由AE=5,DEBC知AC=2AE=10,EDC=BCD,再根据正弦函数的概念求解可得【详解】ABC中,ACBC,过点C作CDAB,ADDB6,BDCADC90,AE5,DEBC,AC2AE10,EDCBCD,sinEDCsinBCD,故选:A【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点11、D【解析】【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案【详解】BDC=90,B+
13、BCD=90,ACB=90,即BCD+ACD=90,ACD=B=,A、在RtBCD中,sin=,故A正确,不符合题意;B、在RtABC中,sin=,故B正确,不符合题意;C、在RtACD中,sin=,故C正确,不符合题意;D、在RtACD中,cos=,故D错误,符合题意,故选D【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边12、D【解析】试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.试题解析:画树状图如下:共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.故选D.考点:列表法与树状法
14、.二、填空题:(本大题共6个小题,每小题4分,共24分)13、x(x-1)【解析】x2x= x(x-1).故答案是:x(x-1).14、6或12或1【解析】根据题意得k0且(3)2480,解得k.整数k5,k=4.方程变形为x26x+8=0,解得x1=2,x2=4.ABC的边长均满足关于x的方程x26x+8=0,ABC的边长为2、2、2或4、4、4或4、4、2.ABC的周长为6或12或1.考点:一元二次方程根的判别式,因式分解法解一元二次方程,三角形三边关系,分类思想的应用.【详解】请在此输入详解!15、2【解析】由tanCBD= 设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD
15、+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案【详解】解:在RtBCD中,tanCBD=,设CD=3a、BC=4a,则BD=AD=5a,AC=AD+CD=5a+3a=8a,在RtABC中,由勾股定理可得(8a)2+(4a)2=82,解得:a= 或a=-(舍),则BD=5a=2,故答案为2【点睛】本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图16、 【解析】过点B作BDAC于D,设AH=BC=2x,根据等腰三角形三线合一的性质可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根据三角形的面积列方
16、程求出BD,然后根据锐角的正弦=对边:斜边求解即可【详解】如图,过点B作BDAC于D,设AH=BC=2x,AB=AC,AHBC,BH=CH=BC=x,根据勾股定理得,AC=x,SABC=BCAH=ACBD,即2x2x=xBD,解得BC=x,所以,sinBAC=故答案为17、60.【解析】首先设半圆的圆心为O,连接OE,OA,由题意易得AC是线段OB的垂直平分线,即可求得AOCABC60,又由AE是切线,易证得RtAOERtAOC,继而求得AOE的度数,则可求得答案【详解】设半圆的圆心为O,连接OE,OA,CD2OC2BC,OCBC,ACB90,即ACOB,OABA,AOCABC,BAC30,A
17、OCABC60,AE是切线,AEO90,AEOACO90,在RtAOE和RtAOC中,RtAOERtAOC(HL),AOEAOC60,EOD180AOEAOC60,点E所对应的量角器上的刻度数是60,故答案为:60.【点睛】本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用18、【解析】如图,设AH=x,GB=y,利用平行线分线段成比例定理,构建方程组求出x,y即可解决问题【详解】解:如图,设AHx,GBy,EHBC,FGAC,由可得x,y2,AC,BC7,SABC,故答案为【点睛】本题考查图形的相似,平行线分线段成比例定
18、理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)y=-,y=-2x-4(2)1【解析】(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据SAOB=SAOC+SBOC列式计算即可得解【详解】(1)将A(3,m+1)代入反比例函数y=得,=m+1,解得m=6,m+1=6+1
19、=2,所以,点A的坐标为(3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x4;(2)设AB与x轴相交于点C,令2x4=0解得x=2,所以,点C的坐标为(2,0),所以,OC=2,SAOB=SAOC+SBOC,=22+26,=2+6,=1考点:反比例函数与一次函数的交点问题20、(1)D(0,);(1)C(116,1118);(3)B(1+,0),(1,0).【解析】(1)设OD为x,则BD=AD=3,在RTODA中应用勾股定理即可求解;(1)由题意
20、易证BDCBOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CEAO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=BC,再利用特殊角的三角函数可逐一求解.【详解】()设OD为x,点A(3,0),点B(0,),AO=3,BO=AB=6折叠BD=DA在RtADO中,OA1+OD1=DA19+OD1=(OD)1OD=D(0,)()折叠BDC=CDO=90CDOA且BD=AC,BD=18OD=(18)=18tanABO=,ABC=30,即BAO=60tanABO
21、=,CD=116D(116,1118)()如图:过点C作CEAO于ECEAOOE=1,且AO=3AE=1,CEAO,CAE=60ACE=30且CEAOAC=1,CE=BC=ABACBC=61=4若点B落在A点右边,折叠BC=BC=4,CE=,CEOABE=OB=1+B(1+,0)若点B落在A点左边,折叠BC=BC=4,CE=,CEOABE=OB=1B(1,0)综上所述:B(1+,0),(1,0)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B点的两种情况是解题关键.21、(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,
22、才能使骑自行车的人数不低于开私家车的人数【解析】试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360乘以骑自行车的所占的百分比计算即可得解:样本中的总人数为:3645%=80人;开私家车的人数m=8025%=20;扇形统计图中“骑自行车”的圆心角为.(2)求出骑自行车的人数,然后补全统计图即可.(3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可试题解析:解:(1)80,20,72.(2)骑自行车的人数为:8020%=16人,补全统计图如图所示;(3)设原来开私家车的人
23、中有x人改为骑自行车,由题意得,解得x50.答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数考点:1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.一元一次不等式的应用22、(1)作图见解析;(2)证明见解析;【解析】(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得DEOBFO即可证得结论【详解】解:(1)如图:(2)四边形ABCD为矩形,ADBC,ADB=CBD,EF垂直平分线段BD,BO=DO,在DEO和三角形BFO中,DEOBFO(ASA),DE=BF考点:
24、1作图基本作图;2线段垂直平分线的性质;3矩形的性质23、,1【解析】先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可【详解】解:原式,不等式组的解为a5,其整数解是2,3,4,a不能等于0,2,4,a3,当a3时,原式1【点睛】本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键24、(1)证明见解析;(2)4【解析】(1)已知四边形 ABCD 是平行四边形,根据平行四边形的性质可得ABCD,AB=CD,又因AE=AB,可得AE=CD,根据一组对边平行且相等的四边形是平行四边形即可判定四边形 ACDE 是平
25、行四边形;(2)连接 EC,易证BEC 是直角三角形,解直角三角形即可解决问题.【详解】(1)证明:四边形 ABCD 是平行四边形,ABCD,AB=CD,AE=AB,AE=CD,AECD,四边形 ACDE 是平行四边形(2)如图,连接 ECAC=AB=AE,EBC 是直角三角形,cosB=,BE=6,BC=2,EC=4【点睛】本题考查平行四边形的性质和判定、直角三角形的判定、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型25、7【解析】根据分式的性质及等式的性质进行去分母,去括号,移项,合并同类项,未知数系数化为1即可.【详解】 -1=3-(x-3)=-1
26、3-x+3=-1x=7【点睛】此题主要考查分式方程的求解,解题的关键是正确去掉分母.26、 (1) ;(2)80;(3)100.【解析】(1)过A作AKBC于K,根据sinBEF=得出,设FK=3a,AK=5a,可求得BF=a,故;(2)过A作AKBC于K,延长AK交ED于G,则AGED,得EGAEHD,利用相似三角形的性质即可求出;(3)延长AB、ED交于K,延长AC、ED交于T,根据相似三角形的性质可求出BE=ED,故可求出矩形的面积.【详解】解:(1)过A作AKBC于K,sinBEF,sinFAK,设FK=3a,AK=5a,AK=4a,AB=AC,BAC=90,BK=CK=4a,BF=a
27、,又CF=7a, (2)过A作AKBC于K,延长AK交ED于G,则AGED,AGE=DHE=90,EGAEHD,,,其中EG=BK,BC=10,tanABC,cosABC,BABC cosABC,BK= BAcosABCEG=8,另一方面:ED=BC=10,EHEA=80(3)延长AB、ED交于K,延长AC、ED交于T,BCKT, ,同理: FG2= BFCG ,ED2= KEDT ,又KEBCDT,, KEDT BE2, BE2ED2 BE=ED 【点睛】此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.27、无解【解析】两边都乘以x(x-3),去分母,化为整式方程求解即可.【详解】解:去分母得:x23xx23x18,解得:x3,经检验x3是增根,分式方程无解【点睛】题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.