《2022-2023学年山东省济南市章丘区中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省济南市章丘区中考数学最后冲刺浓缩精华卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列说法正确的是()A掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件B明天下雪的概率为,表示明
2、天有半天都在下雪C甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D了解一批充电宝的使用寿命,适合用普查的方式2如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a0)经过ABC区域(包括边界),则a的取值范围是()A或B或C或D3函数与在同一坐标系中的大致图象是( )A、 B、 C、 D、4下列各式中正确的是()A =3 B =3 C =3 D5如图,PA切O于点A,PO交O于点B,点C是O优弧弧AB上一点,连接AC、BC,如果P=C,O的半径为1,则劣弧弧AB的长为()ABCD6已
3、知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为()A1B2C3D47下列计算正确的是( )A2xx1Bx2x3x6C(mn)2m2n2D(xy3)2x2y68如下字体的四个汉字中,是轴对称图形的是( )ABCD9如图,ABC是O的内接三角形,AC是O的直径,C=50,ABC的平分线BD交O于点D,则BAD的度数是( )A45B85C90D9510函数y=中自变量x的取值范围是( )Ax-1且x1Bx-1Cx1D-1x111若一元二次方程x22x+m=0有两个不相同的实数根,则实数m的取值范围是()Am1Bm1Cm1Dm1122017年我国大学生毕业人数将达到7490000人,这个数
4、据用科学记数法表示为()A7.49107B74.9106C7.49106D0.749107二、填空题:(本大题共6个小题,每小题4分,共24分)13将一副三角板如图放置,若,则的大小为_14三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为_元(用含a、b的代数式表示)15如图,RtABC中,ACB=90,D为AB的中点,F为CD上一点,且CF=CD,过点B作BEDC交AF的延长线于点E,BE=12,则AB的长为_16某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 分17我
5、国古代易经一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_个18如图,已知,D、E分别是边BA、CA延长线上的点,且如果,那么AE的长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知AB是O的直径,PB是O的切线,C是O上的点,ACOP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f(1)求证:PC是O的切线;(2)设OP=AC,求CPO的正弦值;(3)
6、设AC=9,AB=15,求d+f的取值范围20(6分)如图,BD是矩形ABCD的一条对角线(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF21(6分)如图,交于点求的值22(8分)一道选择题有四个选项.(1)若正确答案是,从中任意选出一项,求选中的恰好是正确答案的概率;(2)若正确答案是,从中任意选择两项,求选中的恰好是正确答案的概率.23(8分)如图,抛物线y=x22mx(m0)与x轴的另一个交点为A,过P(1,m)作PMx轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(1)若m=2,求点A
7、和点C的坐标;(2)令m1,连接CA,若ACP为直角三角形,求m的值;(3)在坐标轴上是否存在点E,使得PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由24(10分)研究发现,抛物线上的点到点F(0,1)的距离与到直线l:的距离相等.如图1所示,若点P是抛物线上任意一点,PHl于点H,则PF=PH.基于上述发现,对于平面直角坐标系xOy中的点M,记点到点的距离与点到点的距离之和的最小值为d,称d为点M关于抛物线的关联距离;当时,称点M为抛物线的关联点.(1)在点,中,抛物线的关联点是_ ;(2)如图2,在矩形ABCD中,点,点,若t=4,点M在矩形ABCD上
8、,求点M关于抛物线的关联距离d的取值范围;若矩形ABCD上的所有点都是抛物线的关联点,则t的取值范围是_.25(10分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021(1)根据上述信息可知:甲命中环数的中位数是_环,乙命中环数的众数是_环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小(填“变大”、“变小”或“不变”)26(12分) 如图,在平面直角坐标系中,抛物线yx2+bx+c(a0)与
9、x轴交于A、B两点,与y轴交于点C,点A的坐标为(1,0),抛物线的对称轴直线x交x轴于点D(1)求抛物线的解析式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角(090),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由27(12分)计算:(3.14)02|3|参考答案一、选择题(本大题
10、共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据必然事件、不可能事件、随机事件的概念、方差和普查的概念判断即可【详解】A. 掷一枚均匀的骰子,骰子停止转动后,5点朝上是随机事件,错误;B. “明天下雪的概率为”,表示明天有可能下雪,错误;C. 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,正确;D. 了解一批充电宝的使用寿命,适合用抽查的方式,错误;故选:C【点睛】考查方差, 全面调查与抽样调查, 随机事件, 概率的意义,比较基础,难度不大.2、B【解析】试题解析
11、:如图所示:分两种情况进行讨论:当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过ABC区域(包括边界),的取值范围是: 当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过ABC区域(包括边界),的取值范围是: 故选B.点睛:二次函数 二次项系数决定了抛物线开口的方向和开口的大小,开口向上,开口向下.的绝对值越大,开口越小.3、D【解析】试题分析:根据一次函数和反比例函数的性质,分k0和k0两种情况讨论:当k0时,一次函数图象过二、四、三象限,反比例函数中,k0,图象分布在一、三象限;当k0时,一次函数过一、三、四象限,反比例函数中,k0,图象分布在二、四象限故选D考点:一
12、次函数和反比例函数的图象4、D【解析】原式利用平方根、立方根定义计算即可求出值【详解】解:A、原式=3,不符合题意;B、原式=|-3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2-=,符合题意,故选:D【点睛】此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键5、A【解析】利用切线的性质得OAP=90,再利用圆周角定理得到C=O,加上P=C可计算写出O=60,然后根据弧长公式计算劣弧的长【详解】解:PA切O于点A,OAPA,OAP=90,C=O,P=C,O=2P,而O+P=90,O=60,劣弧AB的长=故选:A【点睛】本题考查了切线的性质:圆的切线垂直于经过切点
13、的半径也考查了圆周角定理和弧长公式6、C【解析】先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1由于原方程只有一个实数根,因此,方程的根有两种情况:(1)方程有两个相等的实数根,此二等根使x(x-2)1;(2)方程有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)1针对每一种情况,分别求出a的值及对应的原方程的根【详解】去分母,将原方程两边同乘x(x2),整理得2x23x+(3a)=1方程的根的情况有两种:(1)方程有两个相等的实数根,即=932(3a)=1解得a=当a=时,解方程2x23x+(+3)=1,得x1=x2=(2)方程有两个不等的实数根,而其中一
14、根使原方程分母为零,即方程有一个根为1或2(i)当x=1时,代入式得3a=1,即a=3当a=3时,解方程2x23x=1,x(2x3)=1,x1=1或x2=1.4而x1=1是增根,即这时方程的另一个根是x=1.4它不使分母为零,确是原方程的唯一根(ii)当x=2时,代入式,得2323+(3a)=1,即a=5当a=5时,解方程2x23x2=1,x1=2,x2= x1是增根,故x=为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个故选C【点睛】考查了分式方程的解法及增根问题由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论理解分式方程产生
15、增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键7、D【解析】根据合并同类项的法则,积的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解【详解】解:A、2x-x=x,错误; B、x2x3=x5,错误; C、(m-n)2=m2-2mn+n2,错误; D、(-xy3)2=x2y6,正确; 故选D【点睛】考查了整式的运算能力,对于相关的整式运算法则要求学生很熟练,才能正确求出结果8、A【解析】试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形故选A考点:轴对称图形9
16、、B【解析】解:AC是O的直径,ABC=90,C=50,BAC=40,ABC的平分线BD交O于点D,ABD=DBC=45,CAD=DBC=45,BAD=BAC+CAD=40+45=85,故选B【点睛】本题考查圆周角定理;圆心角、弧、弦的关系10、A【解析】分析:根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分详解:根据题意得到:,解得x-1且x1,故选A点睛:本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数易错易混点:学生易对二
17、次根式的非负性和分母不等于0混淆11、D【解析】分析:根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围详解:方程有两个不相同的实数根, 解得:m1故选D点睛:本题考查了根的判别式,牢记“当0时,方程有两个不相等的实数根”是解题的关键12、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】7490000=7.49106.故选C.【点睛】此题考查科学记数法的表示方法科学记数法的表示形
18、式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值二、填空题:(本大题共6个小题,每小题4分,共24分)13、160【解析】试题分析:先求出COA和BOD的度数,代入BOC=COA+AOD+BOD求出即可解:AOD=20,COD=AOB=90,COA=BOD=9020=70,BOC=COA+AOD+BOD=70+20+70=160,故答案为160考点:余角和补角14、(3ab)【解析】解:由题意可得,剩余金额为:(3a-b)元,故答案为:(3a-b)点睛:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式15、1【解析】根据三角形的性质求解即可。【详
19、解】解:在RtABC中, D为AB的中点, 根据直角三角形斜边的中线等于斜边的一半可得:AD=BD=CD,因为D为AB的中点, BE/DC, 所以DF是ABE的中位线,BE=2DF=12所以DF=6,设CD=x,由CF=CD,则DF=6,可得CD=9,故AD=BD=CD=9,故AB=1,故答案:1.【点睛】本题主要考查三角形基本概念,综合运用三角形的知识可得答案。16、88【解析】试题分析:根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可:笔试按60%、面试按40%计算,总成绩是:9060%+8540%=88(分)17、1【解析】分析:类比于现在我们的十进制“满十进一”
20、,可以表示满六进一的数为:万位上的数64+千位上的数63+百位上的数62+十位上的数6+个位上的数,即164+263+362+06+2=1详解:2+06+366+2666+16666=1,故答案为:1点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力18、【解析】由DEBC不难证明ABCADE,再由,将题中数值代入并根据等量关系计算AE的长.【详解】解:由DEBC不难证明ABCADE,,CE=4,,解得:AE=故答案为.【点睛】本题考查了相似三角形的判定和性质,熟记三角形
21、的判定和性质是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)详见解析;(2);(3)【解析】(1)连接OC,根据等腰三角形的性质得到A=OCA,由平行线的性质得到A=BOP,ACO=COP,等量代换得到COP=BOP,由切线的性质得到OBP=90,根据全等三角形的性质即可得到结论;(2)过O作ODAC于D,根据相似三角形的性质得到CDOP=OC2,根据已知条件得到,由三角函数的定义即可得到结论;(3)连接BC,根据勾股定理得到BC=12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论【详解】(1)连接OC,
22、OA=OC,A=OCA,ACOP,A=BOP,ACO=COP,COP=BOP,PB是O的切线,AB是O的直径,OBP=90,在POC与POB中,COPBOP,OCP=OBP=90,PC是O的切线;(2)过O作ODAC于D,ODC=OCP=90,CD=AC,DCO=COP,ODCPCO,CDOP=OC2,OP=AC,AC=OP,CD=OP,OPOP=OC2,sinCPO=;(3)连接BC,AB是O的直径,ACBC,AC=9,AB=1,BC=12,当CMAB时,d=AM,f=BM,d+f=AM+BM=1,当M与B重合时,d=9,f=0,d+f=9,d+f的取值范围是:9d+f1【点睛】本题考查了切
23、线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键20、(1)作图见解析;(2)证明见解析;【解析】(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得DEOBFO即可证得结论【详解】解:(1)如图:(2)四边形ABCD为矩形,ADBC,ADB=CBD,EF垂直平分线段BD,BO=DO,在DEO和三角形BFO中,DEOBFO(ASA),DE=BF考点:1作图基本作图;2线段垂直平分线的性质;3矩形的性质21、【解析】试题分析:本题考查了相似三角形的判定与
24、性质,解直角三角形.由A=ACD,AOB=COD可证ABOCDO,从而;再在RtABC和RtBCD中分别求出AB和CD的长,代入即可.解:ABC=BCD=90,ABCD,A=ACD,ABOCDO,在RtABC中,ABC=90,A=45,BC=1,AB=1在RtBCD中,BCD =90,D=30,BC=1,CD=,22、(1);(2)【解析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解【详解】解:(1)选中的恰好是正确答案A的概率为;(2)画树状图:共有12种等可能的结果数,其中选中的恰好是正确答案A,B的
25、结果数为2,所以选中的恰好是正确答案A,B的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率23、(1)A(4,0),C(3,3);(2) m=;(3) E点的坐标为(2,0)或(,0)或(0,4);【解析】方法一:(1)m=2时,函数解析式为y=,分别令y=0,x=1,即可求得点A和点B的坐标, 进而可得到点C的坐标;(2) 先用m表示出P, A C三点的坐标,分别讨论APC=,ACP=,PAC=三种情况, 利用勾股定理即可求得m的值;(3) 设点F(x,y)是直线PE上任意一
26、点,过点F作FNPM于N,可得RtFNPRtPBC,NP:NF=BC:BP求得直线PE的解析式,后利用PEC是以P为直角顶点的等腰直角三角形求得E点坐标.方法二:(1)同方法一.(2) 由ACP为直角三角形, 由相互垂直的两直线斜率相乘为-1,可得m的值;(3)利用PEC是以P为直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标【详解】方法一:解:(1)若m=2,抛物线y=x22mx=x24x,对称轴x=2,令y=0,则x24x=0,解得x=0,x=4,A(4,0),P(1,2),令x=1,则y=3,B(1,3),C(3,3)(2)抛物线y=x22mx(m1),A(2m,
27、0)对称轴x=m,P(1,m)把x=1代入抛物线y=x22mx,则y=12m,B(1,12m),C(2m1,12m),PA2=(m)2+(2m1)2=5m24m+1,PC2=(2m2)2+(1m)2=5m210m+5,AC2=1+(12m)2=24m+4m2,ACP为直角三角形,当ACP=90时,PA2=PC2+AC2,即5m24m+1=5m210m+5+24m+4m2,整理得:4m210m+6=0,解得:m=,m=1(舍去),当APC=90时,PA2+PC2=AC2,即5m24m+1+5m210m+5=24m+4m2,整理得:6m210m+4=0,解得:m=,m=1,和1都不符合m1,故m=
28、(3)设点F(x,y)是直线PE上任意一点,过点F作FNPM于N,FPN=PCB,PNF=CBP=90,RtFNPRtPBC,NP:NF=BC:BP,即=,y=2x2m,直线PE的解析式为y=2x2m令y=0,则x=1+,E(1+m,0),PE2=(m)2+(m)2=,=5m210m+5,解得:m=2,m=,E(2,0)或E(,0),在x轴上存在E点,使得PEC是以P为直角顶点的等腰直角三角形,此时E(2,0)或E(,0);令x=0,则y=2m,E(0,2m)PE2=(2)2+12=55m210m+5=5,解得m=2,m=0(舍去),E(0,4)y轴上存在点E,使得PEC是以P为直角顶点的等腰
29、直角三角形,此时E(0,4),在坐标轴上是存在点E,使得PEC是以P为直角顶点的等腰直角三角形,E点的坐标为(2,0)或(,0)或(0,4);方法二:(1)略(2)P(1,m),B(1,12m),对称轴x=m,C(2m1,12m),A(2m,0),ACP为直角三角形,ACAP,ACCP,APCP,ACAP,KACKAP=1,且m1,m=1(舍)ACCP,KACKCP=1,且m1,=1,m=,APCP,KAPKCP=1,且m1,=1,m=(舍)(3)P(1,m),C(2m1,12m),KCP=,PEC是以P为直角顶点的等腰直角三角形,PEPC,KPEKCP=1,KPE=2,P(1,m),lPE:
30、y=2x2m,点E在坐标轴上,当点E在x轴上时,E(,0)且PE=PC,(1)2+(m)2=(2m11)2+(12m+m)2,m2=5(m1)2,m1=2,m2=,E1(2,0),E2(,0),当点E在y轴上时,E(0,2m)且PE=PC,(10)2+(m+2+m)2=(2m11)2+(12m+m)2,1=(m1)2,m1=2,m2=0(舍),E(0,4),综上所述,(2,0)或(,0)或(0,4)【点睛】本题主要考查二次函数的图象与性质. 扩展:设坐标系中两点坐标分别为点A(), 点B(), 则线段AB的长度为:AB=.设平面内直线AB的解析式为:,直线CD的解析式为:(1)若AB/CD,则
31、有:;(2)若ABCD,则有:.24、 (1) (2) 【解析】【分析】(1)根据关联点的定义逐一进行判断即可得;(2)当时,可以确定此时矩形上的所有点都在抛物线的下方,所以可得,由此可知,从而可得; 由知,分两种情况画出图形进行讨论即可得. 【详解】(1),x=2时,y=1,此时P(2,1),则d=1+2=3,符合定义,是关联点;,x=1时,y=,此时P(1,),则d=+=3,符合定义,是关联点;,x=4时,y=4,此时P(4,4),则d=1+=6,不符合定义,不是关联点;,x=0时,y=0,此时P(0,0),则d=4+5=9,不不符合定义,是关联点,故答案为;(2)当时,此时矩形上的所有点
32、都在抛物线的下方,; 由,如图2所示时,CF最长,当CF=4时,即=4,解得:t=,如图3所示时,DF最长,当DF=4时,即DF=4,解得 t=, 故答案为 【点睛】本题考查了新定义题,二次函数的综合,题目较难,读懂新概念,能灵活应用新概念,结合图形解题是关键.25、(1)8, 6和9;(2)甲的成绩比较稳定;(3)变小 【解析】(1)根据众数、中位数的定义求解即可;(2)根据平均数的定义先求出甲和乙的平均数,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案;(3)根据方差公式进行求解即可【详解】解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8;在
33、乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9;故答案为8,6和9;(2)甲的平均数是:(7+8+8+8+9)5=8,则甲的方差是: (7-8)2+3(8-8)2+(9-8)2=0.4,乙的平均数是:(6+6+9+9+10)5=8,则甲的方差是: 2(6-8)2+2(9-8)2+(10-8)2=2.8,所以甲的成绩比较稳定;(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小故答案为变小【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差方差通常用s2来表示,计算公式是:s2=(x1-)2+(x2-)2+(xn-)2
34、;方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好也考查了算术平均数、中位数和众数26、(1) ;(1) ,E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5)【解析】(1)设B(x1,5),由已知条件得 ,进而得到B(2,5)又由对称轴求得b最终得到抛物线解析式.(1)先求出直线BC的解析式,再设E(m,m+1),F(m,m1+m+1)求得FE的值,得到SCBFm1+2m又由S四边形CDBFSCBF+SCDB,得S四边形CDBF最大值, 最终得到E点坐标(3)设N点为(n,n1+n+1),1n2过N
35、作NOx轴于点P,得PGn1又由直角三角形的判定,得ABC为直角三角形,由ABCGNP, 得n1+或n1(舍去),求得P点坐标又由ABCGNP,且时,得n3或n2(舍去)求得P点坐标【详解】解:(1)设B(x1,5)由A(1,5),对称轴直线x 解得,x12B(2,5)又b抛物线解析式为y ,(1)如图1,B(2,5),C(5,1)直线BC的解析式为yx+1由E在直线BC上,则设E(m,m+1),F(m,m1+m+1)FEm1+m+1(n+1)m1+1m由SCBFEFOB,SCBF(m1+1m)2m1+2m又SCDBBDOC(2)1 S四边形CDBFSCBF+SCDBm1+2m+化为顶点式得,
36、S四边形CDBF(m1)1+ 当m1时,S四边形CDBF最大,为此时,E点坐标为(1,1)(3)存在如图1,由线段FG绕点G顺时针旋转一个角(595),设N(n,n1+n+1),1n2过N作NOx轴于点P(n,5)NPn1+n+1,PGn1又在RtAOC中,AC1OA1+OC11+25,在RtBOC中,BC1OB1+OC116+215AB15115AC1+BC1AB1ABC为直角三角形当ABCGNP,且时,即, 整理得,n11n65解得,n1+ 或n1(舍去)此时P点坐标为(1+,5)当ABCGNP,且时,即, 整理得,n1+n115解得,n3或n2(舍去)此时P点坐标为(3,5)综上所述,满足题意的P点坐标可以为,(1+,5),(3,5)【点睛】本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.27、1【解析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】原式 =13+43,=1【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算