2022-2023学年贵州省剑河县中考数学最后冲刺浓缩精华卷含解析.doc

上传人:茅**** 文档编号:87800157 上传时间:2023-04-17 格式:DOC 页数:15 大小:558.50KB
返回 下载 相关 举报
2022-2023学年贵州省剑河县中考数学最后冲刺浓缩精华卷含解析.doc_第1页
第1页 / 共15页
2022-2023学年贵州省剑河县中考数学最后冲刺浓缩精华卷含解析.doc_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《2022-2023学年贵州省剑河县中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年贵州省剑河县中考数学最后冲刺浓缩精华卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1观察下列图形,则第n个图形中三角形的个数是()A2n+2B4n+4C4n4D4n2如图,ABC中,AB4,AC3,BC2,将ABC绕点A顺时针旋转60得到AED,则BE的长为()A5B4C3D23如图,已知直线abc,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,

2、则DF的值是()A4B4.5C5D5.54如图,点D在ABC的边AC上,要判断ADB与ABC相似,添加一个条件,不正确的是( )AABD=CBADB=ABCCD5若方程x23x4=0的两根分别为x1和x2,则+的值是()A1B2CD6如图,在矩形ABCD中,O为AC中点,EF过O点且EFAC分别交DC于F,交AB于点E,点G是AE中点且AOG=30,则下列结论正确的个数为( )DC=3OG;(2)OG= BC;(3)OGE是等边三角形;(4). A1B2C3D47如图,在ABC中,DEBC,ADEEFC,ADBD53,CF6,则DE的长为( )A6B8C10D128 “a是实数,”这一事件是(

3、 )A不可能事件B不确定事件C随机事件D必然事件9如图,P为O外一点,PA、PB分别切O于点A、B,CD切O于点E,分别交PA、PB于点C、D,若PA6,则PCD的周长为()A8B6C12D1010已知,C是线段AB的黄金分割点,ACBC,若AB=2,则BC=()A3B(+1)C1D(1)二、填空题(本大题共6个小题,每小题3分,共18分)11如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点若AC=,AEO=120,则FC的长度为_12如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上若抛物线

4、y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_ 13一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为_14在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:班级平均分中位数方差甲班乙班数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:这次数学测试成绩中,甲、乙两个班的平均水平相同;甲班学生中数学成绩95分及以上的人数少;乙班学生的数学成绩比较整齐,分化较小上述评估中,正确的是_填序号15阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);第二步:以B点为圆

5、心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为_16在平面直角坐标系xOy中,点A、B为反比例函数 (x0)的图象上两点,A点的横坐标与B点的纵坐标均为1,将 (x0)的图象绕原点O顺时针旋转90,A点的对应点为A,B点的对应点为B此时点B的坐标是_三、解答题(共8题,共72分)17(8分)如图,在直角三角形ABC中,(1)过点A作AB的垂线与B的平分线相交于点D(要求:尺规作图,保留作图痕迹,不写作法);(2)若A=30,AB=2,则ABD的面积为 18(8分)如

6、图,在RtABC中,C90,AC,tanB,半径为2的C分别交AC,BC于点D、E,得到DE弧(1)求证:AB为C的切线(2)求图中阴影部分的面积19(8分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:(1)求出y与x的函数关系式.(纯利润=总收入-总支出)(2)当y=106000时,求该厂在这个月中生产产品的件数.20(8分)(1)计算:(2)解方程:x24x+2021(8分)

7、某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?22(10分)如图,AB为半圆O的直径,AC是O的一条弦,D为的中点,作DEAC,交AB的延长线于点F,连接DA求证:EF为半圆O的切线;若DADF6,求阴影区域的面积(结果保留根号和)23(12分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA

8、的中点求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,APB=CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使APB=CPD=90,其他条件不变,直接写出中点四边形EFGH的形状(不必证明)24化简分式,并从0、1、2、3这四个数中取一个合适的数作为x的值代入求值.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可解:根据给出的3个图形可以知道

9、:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n故选D考点:规律型:图形的变化类2、B【解析】根据旋转的性质可得AB=AE,BAE=60,然后判断出AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB【详解】解:ABC绕点A顺时针旋转60得到AED,AB=AE,BAE=60,AEB是等边三角形,BE=AB,AB=1,BE=1故选B【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义3、B【解析】试题分析:根据平行线分线段成比例可得,然后根据A

10、C=1,CE=6,BD=3,可代入求解DF=12故选B考点:平行线分线段成比例4、C【解析】由A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用【详解】A是公共角,当ABD=C或ADB=ABC时,ADBABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,ADBABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,A不是夹角,故不能判定ADB与ABC相似,故C错误,符合题意要

11、求,故选C5、C【解析】试题分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用异分母分式的变形,将求出的两根之和x1+x2=3与两根之积x1x2=4代入,即可求出=故选C考点:根与系数的关系6、C【解析】EFAC,点G是AE中点,OG=AG=GE=AE,AOG=30,OAG=AOG=30,GOE=90-AOG=90-30=60,OGE是等边三角形,故(3)正确;设AE=2a,则OE=OG=a,由勾股定理得,AO=,O为AC中点,AC=2AO=2,BC=AC=,在RtABC中,由勾股定理得,AB=3a,四边形ABCD是矩形,CD=AB=3a,DC=3O

12、G,故(1)正确;OG=a,BC=,OGBC,故(2)错误;SAOE=a=,SABCD=3a=32,SAOE=SABCD,故(4)正确;综上所述,结论正确是(1)(3)(4)共3个,故选C【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.7、C【解析】DEBC,ADE=B,AED=C,又ADE=EFC,B=EFC,ADEEFC,BDEF,四边形BFED是平行四边形,BD=EF,解得:DE=10.故选C.8、D【解析】是实数,|一定大于等于0,是必然事件,故选D.9、C【解析】由切线长定理可求得PAPB,ACCE,BDED,则可

13、求得答案【详解】PA、PB分别切O于点A、B,CD切O于点E,PAPB6,ACEC,BDED,PC+CD+PDPC+CE+DE+PDPA+AC+PD+BDPA+PB6+612,即PCD的周长为12,故选:C【点睛】本题主要考查切线的性质,利用切线长定理求得PAPB、ACCE和BDED是解题的关键10、C【解析】根据黄金分割点的定义,知BC为较长线段;则BC= AB,代入数据即可得出BC的值【详解】解:由于C为线段AB=2的黄金分割点,且ACBC,BC为较长线段;则BC=2=-1故答案为:-1【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 倍,较长的线段=原线段的 倍二

14、、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】先根据矩形的性质,推理得到OF=CF,再根据RtBOF求得OF的长,即可得到CF的长【详解】解:EFBD,AEO=120,EDO=30,DEO=60,四边形ABCD是矩形,OBF=OCF=30,BFO=60,FOC=60-30=30,OF=CF,又RtBOF中,BO=BD=AC=,OF=tan30BO=1,CF=1,故答案为:1【点睛】本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分12、【解析】根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=

15、1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积【详解】抛物线的对称轴为x=-抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BCx轴,点C的横坐标为-1四边形ABCD为菱形,AB=BC=AD=1,点D的坐标为(-2,0),OA=2在RtABC中,AB=1,OA=2,OB=4,S菱形ABCD=ADOB=14=3故答案为3【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键13、1.【解析】解:因为众数为3,可设a=3,b=3,c未知

16、,平均数=(1+3+1+1+3+3+c)7=1,解得c=0,将这组数据按从小到大的顺序排列:0、1、1、1、3、3、3,位于最中间的一个数是1,所以中位数是1,故答案为:1点睛:本题为统计题,考查平均数、众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错14、【解析】根据平均数、中位数和方差的意义分别对每一项进行解答,即可得出答案【详解】解:甲班的平均成绩是92.5分,乙班的平均成绩是92.5分,这次数学测试成绩中,甲、乙两个班的平均水平相同;故正确;

17、甲班的中位数是95.5分,乙班的中位数是90.5分,甲班学生中数学成绩95分及以上的人数多,故错误;甲班的方差是41.25分,乙班的方差是36.06分,甲班的方差大于乙班的方差,乙班学生的数学成绩比较整齐,分化较小;故正确;上述评估中,正确的是;故答案为:【点睛】本题考查平均数、中位数和方差,平均数表示一组数据的平均程度中位数是将一组数据从小到大或从大到小重新排列后,最中间的那个数或最中间两个数的平均数;方差是用来衡量一组数据波动大小的量15、作图见解析,【解析】解:如图,点M即为所求连接AC、BC由题意知:AB=4,BC=1AB为圆的直径,ACB=90,则AM=AC=,点M表示的数为.故答案

18、为点睛:本题主要考查作图尺规作图,解题的关键是熟练掌握尺规作图和圆周角定理及勾股定理16、(1,-4)【解析】利用旋转的性质即可解决问题.【详解】如图,由题意A(1,4),B(4,1),A根据旋转的性质可知(4,-1),B(1,-4);所以,B(1,-4);故答案为(1,-4).【点睛】本题考查反比例函数的旋转变换,解题的关键是灵活运用所学知识解决问题三、解答题(共8题,共72分)17、(1)见解析(2) 【解析】(1)分别作ABC的平分线和过点A作AB的垂线,它们的交点为D点;(2)利用角平分线定义得到ABD=30,利用含30度的直角三角形三边的关系得到AD=AB=,然后利用三角形面积公式求

19、解【详解】解:(1)如图,点D为所作;(2)CAB=30,ABC=60BD为角平分线,ABD=30DAAB,DAB=90在RtABD中,AD=AB=,ABD的面积=2=故答案为【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了三角形面积公式18、 (1)证明见解析;(2)1-.【解析】(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;(2)分别求出ACB的面积和扇形DCE的

20、面积,即可得出答案【详解】(1)过C作CFAB于F在RtABC中,C90,AC,tanB,BC2,由勾股定理得:AB1ACB的面积S,CF2,CF为C的半径CFAB,AB为C的切线;(2)图中阴影部分的面积SACBS扇形DCE1【点睛】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键19、(1)y=19x-1(x0且x是整数) (2)6000件【解析】(1)本题的等量关系是:纯利润=产品的出厂单价产品的数量-产品的成本价产品的数量-生产过程中的污水处理费-排污设备的损耗,可根据此等量关系来列出总利润与产品数量之间的函数关系式;(2)根据(1

21、)中得出的式子,将y的值代入其中,求出x即可【详解】(1)依题意得:y=80x-60x-0.5x2-1,化简得:y=19x-1,所求的函数关系式为y=19x-1(x0且x是整数)(2)当y=106000时,代入得:106000=19x-1,解得x=6000,这个月该厂生产产品6000件【点睛】本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解20、(1)-1;(2)x12+,x22【解析】(1)按照实数的运算法则依次计算即可;(2)利用配方法解方程【详解】(1)原式21+21;(2)x24x+20,x24x2,x24x+42+4,即(x2)22,x2,x12

22、+,x22【点睛】此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.21、1人【解析】解:设九年级学生有x人,根据题意,列方程得:,整理得0.8(x+88)=x,解之得x=1经检验x=1是原方程的解答:这个学校九年级学生有1人 设九年级学生有x人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:,根据题意可得方程,解方程即可22、(1)

23、证明见解析 (2)6【解析】(1)直接利用切线的判定方法结合圆心角定理分析得出ODEF,即可得出答案;(2)直接利用得出SACDSCOD,再利用S阴影SAEDS扇形COD,求出答案【详解】(1)证明:连接OD,D为弧BC的中点,CADBAD,OAOD,BADADO,CADADO,DEAC,E90,CAD+EDA90,即ADO+EDA90,ODEF,EF为半圆O的切线;(2)解:连接OC与CD,DADF,BADF,BADFCAD,又BAD+CAD+F90,F30,BAC60,OCOA,AOC为等边三角形,AOC60,COB120,ODEF,F30,DOF60,在RtODF中,DF6,ODDFta

24、n306,在RtAED中,DA6,CAD30,DEDAsin303,EADAcos309,COD180AOCDOF60,由CODO,COD是等边三角形,OCD60,DCOAOC60,CDAB,故SACDSCOD,S阴影SAEDS扇形COD【点睛】此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出SACDSCOD是解题关键23、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EHFG,EH=FG即可(2)四边形EFGH是菱形先证明APCBPD,得

25、到AC=BD,再证明EF=FG即可(3)四边形EFGH是正方形,只要证明EHG=90,利用APCBPD,得ACP=BDP,即可证明COD=CPD=90,再根据平行线的性质即可证明【详解】(1)证明:如图1中,连接BD点E,H分别为边AB,DA的中点,EHBD,EH=BD,点F,G分别为边BC,CD的中点,FGBD,FG=BD,EHFG,EH=GF,中点四边形EFGH是平行四边形(2)四边形EFGH是菱形证明:如图2中,连接AC,BDAPB=CPD,APB+APD=CPD+APD,即APC=BPD,在APC和BPD中,AP=PB,APC=BPD,PC=PD,APCBPD,AC=BD点E,F,G分

26、别为边AB,BC,CD的中点,EF=AC,FG=BD,四边形EFGH是平行四边形,四边形EFGH是菱形(3)四边形EFGH是正方形证明:如图2中,设AC与BD交于点OAC与PD交于点M,AC与EH交于点NAPCBPD,ACP=BDP,DMO=CMP,COD=CPD=90,EHBD,ACHG,EHG=ENO=BOC=DOC=90,四边形EFGH是菱形,四边形EFGH是正方形考点:平行四边形的判定与性质;中点四边形24、x取0时,为1 或x取1时,为2【解析】试题分析:利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可试题解析:解:原式= x1,x1-40,x-20,x1且x-1且x2,当x=0时,原式=1或当x=1时,原式=2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁