《山东省威海乳山市市级名校2022-2023学年中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省威海乳山市市级名校2022-2023学年中考数学最后冲刺模拟试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1ABC的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是()A13,5B6.5,3C5,2D6.5,22如图是某个几何体的三视图,该几何体是()
2、A三棱柱B三棱锥C圆柱D圆锥3如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A5元,2元B2元,5元C4.5元,1.5元D5.5元,2.5元4在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数232341则这些运动员成绩的中位数、众数分别为A、B、C、D、5如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B已知小颖的眼睛D离地面的高度CD1.5m,她离镜子的水平距离CE0.5m,镜子E离旗杆的底部A处的距离AE2m,且A、C、E三点在同一水
3、平直线上,则旗杆AB的高度为()A4.5mB4.8mC5.5mD6 m6若ABC与DEF相似,相似比为2:3,则这两个三角形的面积比为( )A2:3B3:2C4:9D9:47如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是ABCD8若关于x的一元二次方程x22x+m0没有实数根,则实数m的取值是( )Am1Bm1Cm1Dm19甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A B C D10已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( )
4、A3.61106B3.61107C3.61108D3.61109二、填空题(本大题共6个小题,每小题3分,共18分)11如图,ABC中,CDAB于D,E是AC的中点若AD=6,DE=5,则CD的长等于 12如图,AB是半圆O的直径,E是半圆上一点,且OEAB,点C为的中点,则A=_.13计算:2(ab)3b_14计算:(+)=_15如图是一位同学设计的用手电筒来测量某古城墙高度的示意图点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知ABBD,CDBD,测得AB2米,BP3米,PD15米,那么该古城墙的高度CD是_米16如图,O是矩形ABCD的对角线AC的中点
5、,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为 .三、解答题(共8题,共72分)17(8分)已知直线ymx+n(m0,且m,n为常数)与双曲线y(k0)在第一象限交于A,B两点,C,D是该双曲线另一支上两点,且A、B、C、D四点按顺时针顺序排列(1)如图,若m,n,点B的纵坐标为,求k的值;作线段CD,使CDAB且CDAB,并简述作法;(2)若四边形ABCD为矩形,A的坐标为(1,5),求m,n的值;点P(a,b)是双曲线y第一象限上一动点,当SAPC24时,则a的取值范围是 18(8分)已知抛物线y=a(x-1)2+3(a0)与y轴交于点A(0,2),顶点为B,且对称轴l
6、1与x轴交于点M(1)求a的值,并写出点B的坐标;(2)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与x轴交于点N,过点C做DEx轴,分别交l1、l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.19(8分)如图,在ABC中,AB=AC,以AB为直径作O交BC于点D,过点D作O的切线DE交AC于点E,交AB延长线于点F(1)求证:BD=CD;(2)求证:DC2=CEAC;(3)当AC=5,BC=6时,求DF的长20(8分)在锐角ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF
7、交AD于点K,求的值;设EHx,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值21(8分)如图,在四边形ABCD中,ACBD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分ABE; (2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长; (3)如图,若点F为AB的中点,连结FN、FM,求证:MFNBDC22(10分)如图,已知与抛物线C1过 A(-1,0)、B(3,0)、C(0,-3).(1)求抛物线C1 的解析式(2)设抛物线的对称轴与 x 轴交于点 P,D 为第四象限内的一点,若CPD 为等腰直角三角形,求
8、出 D 点坐标23(12分)计算下列各题:(1)tan45sin60cos30;(2)sin230+sin45tan3024如图,已知,请用尺规过点作一条直线,使其将分成面积比为两部分(保留作图痕迹,不写作法)参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆半径为,【详解】解:如下图,ABC的三条边长分别是5,13,12,且52+122=132,ABC是直角三角形,其斜边为外切圆直径,外切圆半径=6.5,内切圆半径=2,故选D.【点睛】本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键.2、A【
9、解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A考点:由三视图判定几何体.3、A【解析】可设1本笔记本的单价为x元,1支笔的单价为y元,由题意可得等量关系:3本笔记本的费用+2支笔的费用=19元,1本笔记本的费用1支笔的费用=3元,根据等量关系列出方程组,再求解即可【详解】设1本笔记本的单价为x元,1支笔的单价为y元,依题意有:,解得:故1本笔记本的单价为5元,1支笔的单价为2元故选A【点睛】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组4、C【解析】根据中位数和众数的概念进行求解【详解】解
10、:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80众数为:1.75;中位数为:1.1故选C【点睛】本题考查1.中位数;2.众数,理解概念是解题关键5、D【解析】根据题意得出ABECDE,进而利用相似三角形的性质得出答案【详解】解:由题意可得:AE2m,CE0.5m,DC1.5m,ABCEDC,即,解得:AB6,故选:D【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出ABECDE是解答此题的关键6、C【解析】由ABC与DEF相似,相似比为2:3,根据相似三角形的性质,即
11、可求得答案【详解】ABC与DEF相似,相似比为2:3,这两个三角形的面积比为4:1故选C【点睛】此题考查了相似三角形的性质注意相似三角形的面积比等于相似比的平方7、D【解析】由圆锥的俯视图可快速得出答案.【详解】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.【点睛】本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.8、C【解析】试题解析:关于的一元二次方程没有实数根,解得:故选C9、A【解析】分析:甲队每天修路xm,则乙队每天修(x10)m,因为甲、乙两队所用的天数相同,所以,。故选A
12、。10、C【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数解答:解:将361 000 000用科学记数法表示为3.611故选C二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角ACD中,利用勾股定理来求线段CD的长度即可【详解】ABC中,CDAB于D,E是AC的中点,DE=5,DE=AC=5,AC=2在直角ACD中,ADC=9
13、0,AD=6,AC=2,则根据勾股定理,得故答案是:112、22.5【解析】连接半径OC,先根据点C为的中点,得BOC=45,再由同圆的半径相等和等腰三角形的性质得:A=ACO=45,可得结论【详解】连接OC,OEAB,EOB=90,点C为的中点,BOC=45,OA=OC,A=ACO=45=22.5,故答案为:22.5【点睛】本题考查了圆周角定理与等腰三角形的性质解题的关键是注意掌握数形结合思想的应用13、2a+b【解析】先去括号,再合并同类项即可得出答案【详解】原式=2a-2b+3b=2a+b故答案为:2a+b14、1【解析】去括号后得到答案.【详解】原式211,故答案为1.【点睛】本题主要
14、考查了去括号的概念,解本题的要点在于二次根式的运算.15、10【解析】首先证明ABPCDP,可得=,再代入相应数据可得答案【详解】如图,由题意可得:APE=CPE,APB=CPD,ABBD,CDBD,ABP=CDP=90,ABPCDP,=,AB=2米,BP=3米,PD=15米,=,解得:CD=10米.故答案为10.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.16、1【解析】AB5,AD12,根据矩形的性质和勾股定理,得AC13.BO为RABC斜边上的中线BO6.5O是AC的中点,M是AD的中点,OM是ACD的中位线OM2.5四边形ABOM的周长为:6.52.56
15、51故答案为1三、解答题(共8题,共72分)17、(1)k= 5;见解析,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2);0a1或a5【解析】(1)求出直线的解析式,利用待定系数法即可解决问题;如图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)求出A,B两点坐标,利用待定系数法即可解决问题;分两种情形求出PAC的面积24时a的值,即可判断【详解】(1),直线的解析式为,点B在直线上,纵坐标为,解得x2,;如下图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)点在上,k5,四边形ABCD是矩形,OAOBOCOD,A,
16、B关于直线yx对称,则有:,解得;如下图,当点P在点A的右侧时,作点C关于y轴的对称点C,连接AC,AC,PC,PC,PAA,C关于原点对称,当时,a5或(舍弃),当点P在点A的左侧时,同法可得a1,满足条件的a的范围为或【点睛】本题属于反比例函数与一次函数的综合问题,熟练掌握待定系数法解函数解析式以及交点坐标的求法是解决本题的关键.18、(1)a=-1,B坐标为(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.【解析】(1)利用待定系数法即可解决问题;(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,再用m表示点C的坐标,需分两种情况讨论,用待定系数法即可解决
17、问题.【详解】(1)把点A(0,2)代入抛物线的解析式可得,2=a+3,a=-1,抛物线的解析式为y=-(x-1)2+3,顶点为(1,3)(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,由解得x=点C的横坐标为MN=m-1,四边形MDEN是正方形,C(,m-1)把C点代入y=-(x-1)2+3,得m-1=-+3,解得m=3或-5(舍去)平移后的解析式为y=-(x-3)2+3,当点C在x轴的下方时,C(,1-m)把C点代入y=-(x-1)2+3,得1-m=-+3,解得m=7或-1(舍去)平移后的解析式为y=-(x-7)2+3综上:平移后的解析式为y=-(x-3)2+3,或y=-(
18、x-7)2+3.【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知正方形的性质与函数结合进行求解.19、(1)详见解析;(2)详见解析;(3)DF=【解析】(1)先判断出ADBC,即可得出结论;(2)先判断出ODAC,进而判断出CED=ODE,判断出CDECAD,即可得出结论;(3)先求出OD,再求出CD=3,进而求出CE,AE,DE,再判断出,即可得出结论【详解】(1)连接AD,AB是O的直径,ADB=90,ADBC,AB=AC, BD=CD;(2)连接OD,DE是O的切线,ODE=90,由(1)知,BD=CD,OA=OB,ODAC,CED=ODE=90=ADC,C=C,CDECAD,
19、CD2=CEAC;(3)AB=AC=5,由(1)知,ADB=90,OA=OB,OD=AB=,由(1)知,CD=BC=3,由(2)知,CD2=CEAC,AC=5,CE=,AE=AC-CE=5-=,在RtCDE中,根据勾股定理得,DE=,由(2)知,ODAC,DF=【点睛】此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出CDECAD是解本题的关键20、(1);(2)1【解析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EHKDx,得出AK12x,EF(12x),再根据Sx(12x)(x
20、6)2+1,可得当x6时,S有最大值为1【详解】解:(1)AEFABC,边BC长为18,高AD长为12,;(2)EHKDx,AK12x,EF(12x),Sx(12x)(x6)2+1.当x6时,S有最大值为1【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标21、(1)证明见解析;(2);(3)证明见解析. 【解析】分析:(1)由AB=AC知ABC=ACB,由等腰三角形三线合一知AMBC,从而根据MAB+ABC=EBC+ACB知MAB=EBC,再由MBN为等腰直角三角形知EBC+
21、NBE=MAB+ABN=MNB=45可得证;(2)设BM=CM=MN=a,知DN=BC=2a,证ABNDBN得AN=DN=2a,RtABM中利用勾股定理可得a的值,从而得出答案;(3)F是AB的中点知MF=AF=BF及FMN=MAB=CBD,再由即可得证详解:(1)AB=AC,ABC=ACB,M为BC的中点,AMBC,在RtABM中,MAB+ABC=90,在RtCBE中,EBC+ACB=90,MAB=EBC,又MB=MN,MBN为等腰直角三角形,MNB=MBN=45,EBC+NBE=45,MAB+ABN=MNB=45,NBE=ABN,即BN平分ABE;(2)设BM=CM=MN=a,四边形DNB
22、C是平行四边形,DN=BC=2a,在ABN和DBN中,ABNDBN(SAS),AN=DN=2a,在RtABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:a=(负值舍去),BC=2a=;(3)F是AB的中点,在RtMAB中,MF=AF=BF,MAB=FMN,又MAB=CBD,FMN=CBD,MFNBDC点睛:本题主要考查相似形的综合问题,解题的关键是掌握等腰三角形三线合一的性质、直角三角形和平行四边形的性质及全等三角形与相似三角形的判定与性质等知识点22、(1)y = x2-2x-3,(2)D1(4,-1),D2(3,- 4),D3 ( 2,- 2 )【解析】(1)设解析式为
23、y=a(x-3)(x+1),把点C(0,-3)代入即可求出解析式;(2)根据题意作出图形,根据等腰直角三角形的性质即可写出坐标.【详解】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入得-3=a(-3)1解得a=1,解析式为y= x2-2x-3,(2)如图所示,对称轴为x=1,过D1作D1Hx轴,CPD为等腰直角三角形,OPCHD1P,PH=OC=3,HD1=OP=1,D1(4,-1)过点D2Fy轴,同理OPCFCD2,FD2=3,CF=1,故D2(3,- 4)由图可知CD1与PD2交于D3,此时PD3CD3,且PD3=CD3,PC=,PD3=CD3=故D3 ( 2,- 2
24、) D1(4,-1),D2(3,- 4),D3 ( 2,- 2 ) 使CPD 为等腰直角三角形.【点睛】此题主要考察二次函数与等腰直角三角形结合的题,解题的关键是熟知二次函数的图像与性质及等腰直角三角形的性质.23、(1);(2).【解析】(1)原式=1=1=;(2)原式=+=【点睛】本题考查特殊角的三角函数值,熟练掌握每个特殊角的三角函数值是解此题的关键.24、详见解析【解析】先作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,即可得到答案.【详解】如图作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,故AEAD,ADBD,故AEAB,而BEAB,而AEC与CEB在AB边上的高相同,所以CEB的面积是AEC的面积的3倍,即SAECSCEB13.【点睛】本题主要考查了三角形的基本概念和尺规作图,解本题的要点在于找到AB的四分之一点,即可得到答案.