《浙江省嘉兴市嘉善县市级名校2022-2023学年中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省嘉兴市嘉善县市级名校2022-2023学年中考数学最后冲刺模拟试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1点是一次函数图象上一点,若点在第一象限,则的取值范围是( )ABCD2已知:如图,在平面直角坐标系xOy中,等边AOB的边长为6,点C在边OA上,点D在边AB上,且OC3BD,反比例函数y
2、(k0)的图象恰好经过点C和点D,则k的值为()ABCD3在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是ABC的()A三条高的交点B重心C内心D外心4将抛物线yx2x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()Ayx2+3x+6Byx2+3xCyx25x+10Dyx25x+45如图,一艘轮船位于灯塔P的北偏东60方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30方向上的B处,则此时轮船所在位置
3、B与灯塔P之间的距离为( )A60海里B45海里C20海里D30海里6如图,ABC在平面直角坐标系中第二象限内,顶点A的坐标是(2,3),先把ABC向右平移6个单位得到A1B1C1,再作A1B1C1关于x轴对称图形A2B2C2,则顶点A2的坐标是()A(4,3)B(4,3)C(5,3)D(3,4)7为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )A平均数 B中位数 C众数 D方差8如图直线ymx与双曲线y=交于点A、B,过A作AMx轴于M点,连接BM,若SAMB2,则k的值是()A1B2C3D49如图,的三边的长分别为20,30
4、,40,点O是三条角平分线的交点,则等于( )A111B123C234D34510方程(m2)x2+3mx+1=0是关于x的一元二次方程,则( )Am2Bm=2Cm=2Dm211如图所示,在折纸活动中,小明制作了一张ABC纸片,点D,E分别在边AB,AC上,将ABC沿着DE折叠压平,A与A重合,若A=70,则1+2=()A70B110C130D14012如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,ABC=90,CAx轴,点C在函数y=(x0)的图象上,若AB=2,则k的值为()A4B2C2D二、填空题:(本大题共6个小题,每小题4分,共24分)13PA
5、、PB分别切O于点A、B,PAB=60,点C在O上,则ACB的度数为_14如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线与扇形OAB的边界总有两个公共点,则实数k的取值范围是.15在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,1)、B(1,1),将线段AB平移后得到线段AB,若点A的坐标为(2,2),则点B的坐标为_16如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将EBF沿EF所在直线折叠得到EBF,连接BD,则BD的最小值是_17计算:3130_.18直线yx+1分别交
6、x轴,y轴于A、B两点,则AOB的面积等于_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,点AF、CD在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,A=D,AF=DC(1)求证:四边形BCEF是平行四边形,(2)若ABC=90,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形20(6分)如图,AC是O的直径,BC是O的弦,点P是O外一点,连接PA、PB、AB、OP,已知PB是O的切线(1)求证:PBA=C;(2)若OPBC,且OP=9,O的半径为3,求BC的长21(6分)如图,在中,为边上的中线,于点E.求证:;若,求线
7、段的长.22(8分)已知:ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中, 每个小正方形的边长是1个单位长度)画出ABC向下平移4个单位得到的A1B1C1,并直接写出C1点的坐标;以点B为位似中心,在网格中画出A2BC2,使A2BC2与ABC位似,且位似比为21,并直接写出C2点的坐标及A2BC2的面积23(8分)如图,是等腰三角形,.(1)尺规作图:作的角平分线,交于点(保留作图痕迹,不写作法);(2)判断是否为等腰三角形,并说明理由.24(10分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指
8、数(AQI)数据,绘制出三幅不完整的统计图表,请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0-50优m51-100良44101-150轻度污染n151-200中度污染4201-300重度污染2300以上严重污染2(1)统计表中m= ,n= ,扇形统计图中,空气质量等级为“良”的天数占 %;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少?25(10分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y
9、(件)与销售价x(元/件)之间的函数关系如图所示(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?26(12分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.(1)给出以下条件;OBOD,12,OEOF,请你从中选取两个条件证明BEODFO;(2)在(1)条件中你所选条件的前提下,添加AECF,求证:四边形ABCD是平行四边形27(12分)先化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.参考答案一、选择题(本
10、大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】试题解析:把点代入一次函数得,点在第一象限上,可得,因此,即,故选B2、A【解析】试题分析:过点C作CEx轴于点E,过点D作DFx轴于点F,如图所示设BD=a,则OC=3aAOB为边长为1的等边三角形,COE=DBF=10,OB=1在RtCOE中,COE=10,CEO=90,OC=3a,OCE=30,OE=a,CE= = a,点C(a, a)同理,可求出点D的坐标为(1a,a)反比例函数(k0)的图象恰好经过点C和点D,k=aa=(1a)a,a=,k=故选A3、D【解析】为使游戏公平,要使凳
11、子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上【详解】三角形的三条垂直平分线的交点到中间的凳子的距离相等,凳子应放在ABC的三条垂直平分线的交点最适当故选D【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养想到要使凳子到三个人的距离相等是正确解答本题的关键4、A【解析】先将抛物线解析式化为顶点式,左加右减的原则即可.【详解】 ,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A【点睛】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;5
12、、D【解析】根据题意得出:B=30,AP=30海里,APB=90,再利用勾股定理得出BP的长,求出答案【详解】解:由题意可得:B=30,AP=30海里,APB=90,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)故选:D【点睛】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键6、A【解析】直接利用平移的性质结合轴对称变换得出对应点位置【详解】如图所示:顶点A2的坐标是(4,-3)故选A【点睛】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键7、D【解析】根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动
13、情况,所以比较两人成绩稳定程度的数据是方差故选D【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用8、B【解析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由SABM=1SAOM并结合反比例函数系数k的几何意义得到k的值【详解】根据双曲线的对称性可得:OA=OB,则SABM1SAOM1,SAOM|k|1,则k1又由于反比例函数图象位于一三象限,k0,所以k1故选B【点睛】本题主要考查了反比例函数y中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线
14、,所得矩形面积为|k|,是经常考查的一个知识点9、C【解析】作OFAB于F,OEAC于E,ODBC于D,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算即可【详解】作OFAB于F,OEAC于E,ODBC于D,三条角平分线交于点O,OFAB,OEAC,ODBC,OD=OE=OF,SABO:SBCO:SCAO=AB:BC:CA=20:30:402:3:4,故选C【点睛】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键10、D【解析】试题分析:根据一元二次方程的概念,可知m-20,解得m2.故选D11、D【解析】四边形ADAE的内角和为(4-2)180=3
15、60,而由折叠可知AED=AED,ADE=ADE,A=A,AED+AED+ADE+ADE=360-A-A=360-270=220,1+2=1802-(AED+AED+ADE+ADE)=14012、A【解析】【分析】作BDAC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用ACx轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值【详解】作BDAC于D,如图,ABC为等腰直角三角形,AC=AB=2,BD=AD=CD=,ACx轴,C(,2),把C(,2)代入y=得k=2=4,故选A【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征
16、,熟知反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、60或120【解析】连接OA、OB,根据切线的性质得出OAP的度数,OBP的度数;再根据四边形的内角和是360,求出AOB的度数,有圆周角定理或圆内接四边形的性质,求出ACB的度数即可【详解】解:连接OA、OBPA,PB分别切O于点A,B,OAPA,OBPB;PAO=PBO=90;又APB=60,在四边形AOBP中,AOB=360909060=120, 即当C在D处时,ACB=60在四边形ADBC中,ACB=180
17、ADB=18060=120于是ACB的度数为60或120,故答案为60或120【点睛】本题考查的是切线的性质定理,圆内接四边形的性质,是一道基础题14、2k。【解析】由图可知,AOB=45,直线OA的解析式为y=x,联立,消掉y得,由解得,.当时,抛物线与OA有一个交点,此交点的横坐标为1.点B的坐标为(2,0),OA=2,点A的坐标为().交点在线段AO上.当抛物线经过点B(2,0)时,解得k=2.要使抛物线与扇形OAB的边界总有两个公共点,实数k的取值范围是2k.【详解】请在此输入详解!15、 (5,4)【解析】试题解析:由于图形平移过程中,对应点的平移规律相同,由点A到点A可知,点的横坐
18、标减6,纵坐标加3,故点B的坐标为 即 故答案为: 16、11【解析】如图所示点B在以E为圆心EA为半径的圆上运动,当D、B、E共线时时,此时BD的值最小,根据勾股定理求出DE,根据折叠的性质可知BE=BE=1,即可求出BD【详解】如图所示点B在以E为圆心EA为半径的圆上运动,当D、B、E共线时时,此时BD的值最小,根据折叠的性质,EBFEBF,EBBF,EB=EB,E是AB边的中点,AB=4,AE=EB=1,AD=6,DE=,BD=11【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用;确定点B在何位置时,BD的值最小是解题的关键17、.【解析】原式利用零指数幂
19、、负整数指数幂法则计算即可求出值【详解】原式1.故答案是:.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键18、.【解析】先求得直线yx+1与x轴,y轴的交点坐标,再根据三角形的面积公式求得AOB的面积即可.【详解】直线yx+1分别交x轴、y轴于A、B两点,A、B点的坐标分别为(1,0)、(0,1),SAOBOAOB11,故答案为【点睛】本题考查了直线与坐标轴的交点坐标及三角形的面积公式,正确求得直线yx+1与x轴、y轴的交点坐标是解决问题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析(2)当AF=时,四边形BCEF是菱形【
20、解析】(1)由AB=DE,A=D,AF=DC,根据SAS得ABCDEF,即可得BC=EF,且BCEF,即可判定四边形BCEF是平行四边形.(2)由四边形BCEF是平行四边形,可得当BECF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得ABCBGC,由相似三角形的对应边成比例,即可求得AF的值.【详解】(1)证明:AF=DC,AF+FC=DC+FC,即AC=DF.在ABC和DEF中,AC=DF,A=D,AB=DE,ABCDEF(SAS).BC=EF,ACB=DFE,BCEF.四边形BCEF是平行四边形(2)解:连接BE,交CF与点G,四边形BCEF是平行四边形,当BECF时,四边形B
21、CEF是菱形.ABC=90,AB=4,BC=3,AC=.BGC=ABC=90,ACB=BCG,ABCBGC,即.FG=CG,FC=2CG=,AF=ACFC=5.当AF=时,四边形BCEF是菱形20、 (1)证明见解析;(2)BC=1【解析】(1)连接OB,根据切线的性质和圆周角定理求出PBO=ABC=90,即可求出答案;(2)求出ABCPBO,得出比例式,代入求出即可【详解】(1)连接OB,PB是O的切线,PBOB,PBA+OBA=90,AC是O的直径,ABC=90,C+BAC=90,OA=OB,OBA=BAO,PBA=C; (2)O的半径是3 ,OB=3,AC=6,OPBC,BOP=OBC,
22、OB=OC,OBC=C,BOP=C,ABC=PBO=90,ABCPBO,=,=,BC=1【点睛】本题考查平行线的性质,切线的性质,相似三角形的性质和判定,圆周角定理等知识点,能综合运用知识点进行推理是解题关键21、(1)见解析;(2).【解析】对于(1),由已知条件可以得到B=C,ABC是等腰三角形,利用等腰三角形的性质易得ADBC,ADC=90;接下来不难得到ADC=BED,至此问题不难证明;对于(2),利用勾股定理求出AD,利用相似比,即可求出DE.【详解】解:(1)证明:,.又为边上的中线,.,.(2),.在中,根据勾股定理,得.由(1)得,即,.【点睛】此题考查相似三角形的判定与性质,
23、解题关键在于掌握判定定理.22、解:(1)如图,A1B1C1即为所求,C1(2,2)(2)如图,A2BC2即为所求,C2(1,0),A2BC2的面积:10【解析】分析:(1)根据网格结构,找出点A、B、C向下平移4个单位的对应点、 的位置,然后顺次连接即可,再根据平面直角坐标系写出点的坐标;(2)延长BA到使A=AB,延长BC到,使C=BC,然后连接A2C2即可,再根据平面直角坐标系写出点的坐标,利用B所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解本题解析:(1)如图,A1B1C1即为所求,C1(2,2)(2)如图,B为所求, (1,0),B 的面积:64262424=246
24、44=2414=10,23、(1)作图见解析 (2)为等腰三角形【解析】(1)作角平分线,以B点为圆心,任意长为半径,画圆弧;交直线AB于1点,直线BC于2点,再以2点为圆心,任意长为半径,画圆弧,再以1点为圆心,任意长为半径,画圆弧,相交于3点,连接3点和O点,直线3O即是已知角AOB的对称中心线.(2)分别求出的三个角,看是否有两个角相等,进而判断是否为等腰三角形.【详解】(1)具体如下:(2)在等腰中,BD为ABC的平分线,故,那么在中,是否为等腰三角形.【点睛】本题考查角平分线的作法,以及判定等腰三角形的方法.熟悉了解角平分线的定义以及等腰三角形的判定方法是解题的关键所在.24、 (1
25、)m=20,n=8;55;(2) 答案见解析.【解析】(1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;(2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案.【详解】(1)m=8025%=20,n=80-20-44-4-2-2=8,空气质量等级为“良”的天数占:100%=55%.故答案为20,8,55;(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365(25%+55%)=292(天),答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;补全统计图:【点睛】此题考查了条形图与扇形图的知识读懂统计图,
26、从统计图中得到必要的信息是解决问题的关键25、(1);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元【解析】根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.由总利润=数量单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.【详解】(1).(2) 根据题意,得: 当时,随x的增大而增大当时,取得最大值,最大值是144答:每件销售价为16元时,每天的销售利润最大,最大利润是144元【点睛】熟悉掌握图中所给信息以及列方程组是解决本题的关键.26、(1)见解析;(2)见解析.【解析】试题分析:(1)选取,利
27、用ASA判定BEODFO;也可选取,利用AAS判定BEODFO;还可选取,利用SAS判定BEODFO;(2)根据BEODFO可得EOFO,BODO,再根据等式的性质可得AOCO,根据两条对角线互相平分的四边形是平行四边形可得结论试题解析:证明:(1)选取,在BEO和DFO中,BEODFO(ASA);(2)由(1)得:BEODFO,EOFO,BODO,AECF,AOCO,四边形ABCD是平行四边形点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形27、;2.【解析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=的非负整数解有:2,1,0,其中当x取2或1时分母等于0,不符合条件,故x只能取0将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.