《四川省资阳市资阳市雁江区2023届中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省资阳市资阳市雁江区2023届中考数学仿真试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知:如图,在扇形中,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )ABCD2两个一次函数,它们在同一直角坐标系中的图象大致是( )ABCD3如图,为等边三角形,要在外部取一点,使得和全等,下面是两
2、名同学做法:( )甲:作的角平分线;以为圆心,长为半径画弧,交于点,点即为所求;乙:过点作平行于的直线;过点作平行于的直线,交于点,点即为所求A两人都正确B两人都错误C甲正确,乙错误D甲错误,乙正确4如图,在ABC中,ACB90,沿CD折叠CBD,使点B恰好落在AC边上的点E处若A24,则BDC的度数为() A42B66C69D775下面运算正确的是()AB(2a)2=2a2Cx2+x2=x4D|a|=|a|6已知正多边形的一个外角为36,则该正多边形的边数为( ).A12B10C8D67如图,在RtABC中,ACB=90,CDAB,垂足为D,AB=c,A=,则CD长为()Acsin2Bcco
3、s2CcsintanDcsincos8在以下四个图案中,是轴对称图形的是()ABCD9已知在四边形ABCD中,AD/BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )A若AB=CD,则四边形ABCD一定是等腰梯形;B若DBC=ACB,则四边形ABCD一定是等腰梯形;C若,则四边形ABCD一定是矩形;D若ACBD且AO=OD,则四边形ABCD一定是正方形10下面四个几何体: 其中,俯视图是四边形的几何体个数是()A1B2C3D4二、填空题(共7小题,每小题3分,满分21分)11如果a2a10,那么代数式(a)的值是 12如图,点D在O的直径AB的延长线上,点C在O上,且A
4、C=CD,ACD=120,CD是O的切线:若O的半径为2,则图中阴影部分的面积为_13已知点A,B的坐标分别为(2,3)、(1,2),将线段AB平移,得到线段AB,其中点A与点A对应,点B与点B对应,若点A的坐标为(2,3),则点B的坐标为_14亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_15如图,在正方形ABCD外取一点E,连接AE、BE、DE过点A作AE的垂线交DE于点P若AE=AP=1,PB=下列结论:APDAEB;点B到直线AE的距离为;EBED;SAPD+SAPB=1+;S正方形ABCD=4+其中正确结论的序号是 16如图,ABC中,AB=AC,以AC为
5、斜边作RtADC,使ADC=90,CAD=CAB=26,E、F分别是BC、AC的中点,则EDF等于_17如图,与是以点为位似中心的位似图形,相似比为,若点的坐标是,则点的坐标是_三、解答题(共7小题,满分69分)18(10分)某水果店购进甲乙两种水果,销售过程中发现甲种水果比乙种水果销售量大,店主决定将乙种水果降价1元促销,降价后30元可购买乙种水果的斤数是原来购买乙种水果斤数的1.5倍(1)求降价后乙种水果的售价是多少元/斤?(2)根据销售情况,水果店用不多于900元的资金再次购进两种水果共500斤,甲种水果进价为2元/斤,乙种水果进价为1.5元/斤,问至少购进乙种水果多少斤?19(5分)如
6、图,在ABC中,C = 90,E是BC上一点,EDAB,垂足为D求证:ABCEBD20(8分)如图,已知函数(x0)的图象经过点A、B,点B的坐标为(2,2)过点A作ACx轴,垂足为C,过点B作BDy轴,垂足为D,AC与BD交于点F一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E若AC=OD,求a、b的值;若BCAE,求BC的长21(10分)先化简,再求代数式()的值,其中a=2sin45+tan4522(10分)如图,在ABC中,BC12,tanA,B30;求AC和AB的长23(12分)如图,在中,是边上的高线,平分交于点,经过,两点的交于点,交于点,为的直径(1)求证:是的切
7、线;(2)当,时,求的半径24(14分)如图,在平面直角坐标系中,抛物线与x轴交于点A、B,与y轴交于点C,直线y=x+4经过点A、C,点P为抛物线上位于直线AC上方的一个动点.(1)求抛物线的表达式;(2)如图,当CP/AO时,求PAC的正切值;(3)当以AP、AO为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P的坐标.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】如图,连接OD根据折叠的性质、圆的性质推知ODB是等边三角形,则易求AOD=110-DOB=50;然后由弧长公式弧长的公式 来求 的长【详解】解:如图,连接OD解:如图,连接OD根据
8、折叠的性质知,OB=DB又OD=OB,OD=OB=DB,即ODB是等边三角形,DOB=60AOB=110,AOD=AOB-DOB=50,的长为 =5故选D【点睛】本题考查了弧长的计算,翻折变换(折叠问题)折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等所以由折叠的性质推知ODB是等边三角形是解答此题的关键之处2、B【解析】根据各选项中的函数图象判断出a、b的符号,然后分别确定出两直线经过的象限以及与y轴的交点位置,即可得解【详解】解:由图可知,A、B、C选项两直线一条经过第一三象限,另一条经过第二四象限,所以,a、b异号,所以,经过第一三象限的直线与
9、y轴负半轴相交,经过第二四象限的直线与y轴正半轴相交,B选项符合,D选项,a、b都经过第二、四象限,所以,两直线都与y轴负半轴相交,不符合故选:B【点睛】本题考查了一次函数的图象,一次函数y=kx+b(k0),k0时,一次函数图象经过第一三象限,k0时,一次函数图象经过第二四象限,b0时与y轴正半轴相交,b0时与y轴负半轴相交3、A【解析】根据题意先画出相应的图形,然后进行推理论证即可得出结论【详解】甲的作法如图一:为等边三角形,AD是的角平分线 由甲的作法可知, 在和中, 故甲的作法正确;乙的作法如图二: 在和中, 故乙的作法正确;故选:A【点睛】本题主要借助尺规作图考查全等三角形的判定,掌
10、握全等三角形的判定方法是解题的关键4、C【解析】在ABC中,ACB=90,A=24,B=90-A=66由折叠的性质可得:BCD=ACB=45,BDC=180-BCD-B=69.故选C.5、D【解析】分别利用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质分别化简求出答案.【详解】解:A,故此选项错误;B,故此选项错误;C,,故此选项错误;D,故此选项正确.所以D选项是正确的.【点睛】灵活运用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质可以求出答案6、B【解析】利用多边形的外角和是360,正多边形的每个外角都是36,即可求出答案【详解】解:3603610,所以这个
11、正多边形是正十边形故选:B【点睛】本题主要考查了多边形的外角和定理是需要识记的内容7、D【解析】根据锐角三角函数的定义可得结论.【详解】在RtABC中,ACB=90,AB=c,A=a,根据锐角三角函数的定义可得sin= ,BC=csin,A+B=90,DCB+B=90,DCB=A=在RtDCB中,CDB=90,cosDCB= ,CD=BCcos=csincos,故选D8、A【解析】根据轴对称图形的概念对各选项分析判断利用排除法求解【详解】A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误故选:A【点睛】本题考查了
12、轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合9、C【解析】A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;C、因为由结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.故选C.10、B【解析】试题分析:根据俯视图是分别从物体上面看,所得到的俯视图是四边形的几何体有正方体和三棱柱,故选B考点:简单几何体的三视图二、填
13、空题(共7小题,每小题3分,满分21分)11、1【解析】分析:先由a2a1=0可得a2a=1,再把(a )的第一个括号内通分,并把分子分解因式后约分化简,然后把a2a=1代入即可.详解:a2a1=0,即a2a=1,原式= = =a(a1)=a2a=1,故答案为1点睛:本题考查了分式的化简求值,解题的关键是正确掌握分式混合运算的顺序:先算乘除,后算加减,有括号的先算括号里,整体代入法是求代数式的值常用的一种方法.12、 【解析】试题分析:连接OC,求出D和COD,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案连接OC,AC=CD,ACD=120,CAD=D=30,DC切
14、O于C,OCCD,OCD=90,COD=60,在RtOCD中,OCD=90,D=30,OC=2,CD=2,阴影部分的面积是SOCDS扇形COB=22=2,故答案为2考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.13、(5,8)【解析】各对应点之间的关系是横坐标加4,纵坐标减6,那么让点B的横坐标加4,纵坐标减6即为点B的坐标【详解】由A(-2,3)的对应点A的坐标为(2,-13),坐标的变化规律可知:各对应点之间的关系是横坐标加4,纵坐标减6,点B的横坐标为1+4=5;纵坐标为-2-6=-8;即所求点B的坐标为(5,-8)故答案为(5,-8)【点睛】此题主要
15、考查了坐标与图形的变化-平移,解决本题的关键是根据已知对应点找到各对应点之间的变化规律14、4.41【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数详解:44000000=4.41,故答案为4.41点睛:此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值15、【解析】利用同角的余角相等,易得EAB=PAD,再结合已知条件利用SAS可证两三角形全等
16、;过B作BFAE,交AE的延长线于F,利用中的BEP=90,利用勾股定理可求BE,结合AEP是等腰直角三角形,可证BEF是等腰直角三角形,再利用勾股定理可求EF、BF;利用中的全等,可得APD=AEB,结合三角形的外角的性质,易得BEP=90,即可证;连接BD,求出ABD的面积,然后减去BDP的面积即可;在RtABF中,利用勾股定理可求AB2,即是正方形的面积【详解】EAB+BAP=90,PAD+BAP=90,EAB=PAD,又AE=AP,AB=AD,在APD和AEB中,APDAEB(SAS);故此选项成立;APDAEB,APD=AEB,AEB=AEP+BEP,APD=AEP+PAE,BEP=
17、PAE=90,EBED;故此选项成立;过B作BFAE,交AE的延长线于F,AE=AP,EAP=90,AEP=APE=45,又中EBED,BFAF,FEB=FBE=45,又BE=,BF=EF=,故此选项不正确;如图,连接BD,在RtAEP中,AE=AP=1,EP=,又PB=,BE=,APDAEB,PD=BE=,SABP+SADP=SABD-SBDP=S正方形ABCD-DPBE=(4+)-=+故此选项不正确EF=BF=,AE=1,在RtABF中,AB2=(AE+EF)2+BF2=4+,S正方形ABCD=AB2=4+,故此选项正确故答案为【点睛】本题考查了全等三角形的判定和性质的运用、正方形的性质的
18、运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识16、【解析】 E、F分别是BC、AC的中点. , CAB=26 又 CAD =26 !17、(2,2) 【解析】分析:首先解直角三角形得出A点坐标,再利用位似是特殊的相似,若两个图形与是以点为位似中心的位似图形,相似比是k,上一点的坐标是 则在中,它的对应点的坐标是或,进而求出即可详解:与是以点为位似中心的位似图形, ,若点的坐标是, 过点作交于点E. 点的坐标为:与的相似比为,点的坐标为:即点的坐标为:故答案为:点睛:考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.三、解答题(共7小题,满分69分)18、(1)降价后乙种水果
19、的售价是2元/斤;(2)至少购进乙种水果200斤【解析】(1)设降价后乙种水果的售价是x元, 30元可购买乙种水果的斤数是,原来购买乙种水果斤数是,根据题意即可列出等式;(2)设至少购进乙种水果y斤,甲种水果(500y)斤,有甲乙的单价,总斤数900即可列出不等式,求解即可.【详解】解:(1)设降价后乙种水果的售价是x元,根据题意可得:,解得:x2,经检验x2是原方程的解,答:降价后乙种水果的售价是2元/斤;(2)设至少购进乙种水果y斤,根据题意可得:2(500y)+1.5y900,解得:y200,答:至少购进乙种水果200斤【点睛】本题考查了分式的应用和一元一次不等式的应用,根据题意列出式子
20、是解题的关键19、证明见解析【解析】试题分析:先根据垂直的定义得出EDB90,故可得出EDBC再由BB,根据有两个角相等的两三角形相似即可得出结论试题解析:解:EDAB, EDB90C90, EDBC BB, 点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键20、(1)a=,b=2;(2)BC=【解析】试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tanADF=,tanAEC=,进而求出m的值,即可得出答案试题解析:(1)点B(2,2
21、)在函数y=(x0)的图象上,k=4,则y=,BDy轴,D点的坐标为:(0,2),OD=2,ACx轴,AC=OD,AC=3,即A点的纵坐标为:3,点A在y=的图象上,A点的坐标为:(,3),一次函数y=ax+b的图象经过点A、D,解得:,b=2;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),BDCE,且BCDE,四边形BCED为平行四边形,CE=BD=2,BDCE,ADF=AEC,在RtAFD中,tanADF=,在RtACE中,tanAEC=,=,解得:m=1,C点的坐标为:(1,0),则BC=考点:反比例函数与一次函数的交点问题.21、,【解析】先把小括号内的通分,按照分式的减
22、法和分式除法法则进行化简,再把字母的值代入运算即可【详解】解:原式 当时原式【点睛】考查分式的混合运算,掌握运算顺序是解题的关键22、8+6【解析】如图作CHAB于H在RtBHC求出CH、BH,在RtACH中求出AH、AC即可解决问题;【详解】解:如图作CHAB于H在RtBCH中,BC12,B30,CHBC6,BH6,在RtACH中,tanA,AH8,AC10,【点睛】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型23、(1)见解析;(2)的半径是.【解析】(1)连结,易证,由于是边上的高线,从而可知,所以是的切线(2)由于,
23、从而可知,由,可知:,易证,所以,再证明,所以,从而可求出.【详解】解:(1)连结平分,又,是边上的高线,是的切线.(2),是中点,又,在中,而,的半径是.【点睛】本题考查圆的综合问题,涉及锐角三角函数,相似三角形的判定与性质,等腰三角形的性质等知识,综合程度较高,需要学生综合运用知识的能力24、(1)抛物线的表达式为;(2);(3)P点的坐标是.【解析】分析:(1)由题意易得点A、C的坐标分别为(-1,0),(0,1),将这两点坐标代入抛物线列出方程组,解得b、c的值即可求得抛物线的解析式;(2)如下图,作PHAC于H,连接OP,由已知条件先求得PC=2,AC=,结合SAPC,可求得PH=,
24、再由OA=OC得到CAO=15,结合CPOA可得PCA=15,即可得到CH=PH=,由此可得AH=,这样在RtAPH中由tanPAC=即可求得所求答案了;(3)如图,当四边形AOPQ为符合要求的平行四边形时,则此时PQ=AO=1,且点P、Q关于抛物线的对称轴x=-1对称,由此可得点P的横坐标为-3,代入抛物线解析即可求得此时的点P的坐标.详解:(1)直线y=x+1经过点A、C,点A在x轴上,点C在y轴上A点坐标是(1,0),点C坐标是(0,1),又抛物线过A,C两点,解得,抛物线的表达式为;(2)作PHAC于H,点C、P在抛物线上,CP/AO, C(0,1),A(-1,0)P(-2,1),AC=,PC=2,PH=,A(1,0),C(0,1),CAO=15.CP/AO,ACP=CAO=15,PHAC,CH=PH=,.;(3),抛物线的对称轴为直线,以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,PQAO,且PQ=AO=1 P,Q都在抛物线上,P,Q关于直线对称, P点的横坐标是3, 当x=3时,P点的坐标是.点睛:(1)解第2小题的关键是:作出如图所示的辅助线,构造出RtAPH,并结合题中的已知条件求出PH和AH的长;(2)解第3小题的关键是:根据题意画出符合要求的示意图,并由PQAO,PQ=AO及P、Q关于抛物线的对称轴对称得到点P的横坐标.【详解】请在此输入详解!