四川省成都市高新区2022-2023学年中考数学猜题卷含解析.doc

上传人:lil****205 文档编号:87997252 上传时间:2023-04-19 格式:DOC 页数:21 大小:814KB
返回 下载 相关 举报
四川省成都市高新区2022-2023学年中考数学猜题卷含解析.doc_第1页
第1页 / 共21页
四川省成都市高新区2022-2023学年中考数学猜题卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《四川省成都市高新区2022-2023学年中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省成都市高新区2022-2023学年中考数学猜题卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1计算的结果等于( )A-5B5CD2如图,已知在RtABC中,ABC=90,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线B

2、C上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:EDBC;A=EBA;EB平分AED;ED=AB中,一定正确的是( )ABCD3对于一组统计数据1,1,6,5,1下列说法错误的是()A众数是1B平均数是4C方差是1.6D中位数是64下列几何体中,三视图有两个相同而另一个不同的是()A(1)(2)B(2)(3)C(2)(4)D(3)(4)5如图,是半圆的直径,点、是半圆的三等分点,弦.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()ABCD6如图,用一个半径为6cm的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G向下移动了3cm,则滑轮上的点F旋转了( )

3、A60B90C120D457如图,在ABC中,CDAB于点D,E,F分别为AC,BC的中点,AB=10,BC=8,DE=4.5,则DEF的周长是()A9.5B13.5C14.5D178在平面直角坐标系中,二次函数y=a(xh)2+k(a0)的图象可能是ABCD9要使式子有意义,的取值范围是( )AB且C. 或D 且10已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程x2bxc=0在1x3的范围内有两个相等的实数根,则c的取值范围是( )Ac=4 B5c4 C5c3或c=4 D5c3或c=4二、填空题(共7小题,每小题3分,满分21分)11如图,在平面直角坐标系中,已知A(2

4、,1),B(1,0),将线段AB绕着点B顺时针旋转90得到线段BA,则A的坐标为_12我国明代数学家程大位的名著直指算法统宗里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组_.13在平面直角坐标系中,点 A的坐标是(-1,2) .作点A关于x 轴的对称点,得到点A1 ,再将点A1 向下平移 4个单位,得到点A2 ,则点A2 的坐标是_14如果抛物线y=x2+(m1)x+3经过点(2,1),那么m的值为_15如图,

5、在RtABC中,ACB90,ABC30,将ABC绕点C顺时针旋转至ABC,使得点A恰好落在AB上,则旋转角度为_16计算:22()=_17如图,已知正八边形ABCDEFGH内部ABE的面积为6cm1,则正八边形ABCDEFGH面积为_cm1三、解答题(共7小题,满分69分)18(10分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45改为30. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由(说明:的计算结果精确到0.1米,

6、参考数据:1.41,1.73,2.24,2.45)19(5分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角ACB=75,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m求篮板底部支架HE与支架AF所成的角FHE的度数求篮板顶端F到地面的距离(结果精确到0.1 m;参考数据:cos750.2588,sin750.9659,tan753.732,1.732,1.414)20(8分)先化简代数式,再从2,2,0三个数中选一个恰当的数作为a的值代入求值21(10分)新定义:如图1(图2,图

7、3),在ABC中,把AB边绕点A顺时针旋转,把AC边绕点A逆时针旋转,得到ABC,若BAC+BAC=180,我们称ABC是ABC的“旋补三角形”,ABC的中线AD叫做ABC的“旋补中线”,点A叫做“旋补中心”(特例感知)(1)若ABC是等边三角形(如图2),BC=1,则AD= ;若BAC=90(如图3),BC=6,AD= ;(猜想论证)(2)在图1中,当ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;(拓展应用)(3)如图1点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且APD是BPC的“旋补三角形”,点P是“旋补中心”,请确定点

8、P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长22(10分)如图,在平行四边形ABCD中,过点A作AEBC,垂足为E,连接DE,F为线段DE上一点,且AFE=B求证:ADFDEC;若AB=8,AD=6,AF=4,求AE的长23(12分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形小胖把具有这个规律的图形称为“手拉手”图形如图1,在“手拉手”图形中,小胖发现若BACDAE,ABAC,ADAE,则BDCE(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问

9、题:(2)如图2,ABBC,ABCBDC60,求证:AD+CDBD;(3)如图3,在ABC中,ABAC,BACm,点E为ABC外一点,点D为BC中点,EBCACF,EDFD,求EAF的度数(用含有m的式子表示)24(14分)A,B两地相距20km甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发设甲的骑行时间为x(h)(0x2)(1)根据题意,填写下表:时间x(h)与A地的距离0.51.8 _甲与A地的距离(km)5 20乙与A地的距离(km)012 (2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于

10、x的函数解析式;(3)设甲,乙两人之间的距离为y,当y=12时,求x的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据有理数的除法法则计算可得【详解】解:15(-3)=-(153)=-5,故选:A【点睛】本题主要考查有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除2、B【解析】解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:根据作图过程可知:PB=CP,D为BC的中点,PD垂直平分BC,EDBC正确.ABC=90,PDAB.E为AC的中点,EC=EA,EB=EC.A=EBA正确;EB平分AED错误;

11、ED=AB正确.正确的有.故选B考点:线段垂直平分线的性质.3、D【解析】根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2= (14)2+(14)2+(64)2+(54)2+(14)2=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D考点:1.众数;2.平均数;1.方差;4.中位数.4、B【解析】根据三视图的定义即可解答【详解】正方体的三视图都是正方形,故(1)不符合题意;圆柱的主视图、左

12、视图都是矩形,俯视图是圆,故(2)符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;故选B【点睛】本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.5、D【解析】连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OCBD且BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案【详解】解:如图,连接OC、OD、BD,点C、D是半圆O的三等分点,AOC=COD=DOB=60,OC=OD,COD是等边三角形,OC=OD=C

13、D,OB=OD,BOD是等边三角形,则ODB=60,ODB=COD=60,OCBD,S阴影=S扇形OBD,S半圆O,飞镖落在阴影区域的概率,故选:D【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积6、B【解析】由弧长的计算公式可得答案.【详解】解:由圆弧长计算公式,将l=3代入,可得n =90,故选B.【点睛】本题主要考查圆弧长计算公式,牢记并运用公式是解题的关键.7、B【解析】由三角形中位线定理和直角三角形斜边上的中线等于斜边的一半解答【详解】在ABC中,CDAB于点D,E,F分别为AC,BC的中点,DE=

14、AC=4.1,DF=BC=4,EF=AB=1,DEF的周长=(AB+BC+AC)=(10+8+9)=13.1故选B【点睛】考查了三角形中位线定理和直角三角形斜边上的中线,三角形的中位线平行于第三边,且等于第三边的一半8、B【解析】根据题目给出的二次函数的表达式,可知二次函数的开口向下,即可得出答案.【详解】二次函数y=a(xh)2+k(a0)二次函数开口向下.即B成立.故答案选:B.【点睛】本题考查的是简单运用二次函数性质,解题的关键是熟练掌握二次函数性质.9、D【解析】根据二次根式和分式有意义的条件计算即可.【详解】解: 有意义,a+20且a0,解得a-2且a0.故本题答案为:D.【点睛】二

15、次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.10、D【解析】解:由对称轴x=2可知:b=4,抛物线y=x24x+c,令x=1时,y=c+5,x=3时,y=c3,关于x的一元二次方程x2bxc=0在1x3的范围有实数根,当=0时,即c=4,此时x=2,满足题意当0时,(c+5)(c3)0,5c3,当c=5时,此时方程为:x2+4x+5=0,解得:x=1或x=5不满足题意,当c=3时,此时方程为:x2+4x3=0,解得:x=1或x=3此时满足题意,故5c3或c=4,故选D.点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数

16、与一元二次方程之间的关系是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、 (2,3)【解析】作ACx轴于C,作ACx轴,垂足分别为C、C,证明ABCBAC,可得OC=OB+BC=1+1=2,AC=BC=3,可得结果【详解】如图,作ACx轴于C,作ACx轴,垂足分别为C、C,点A、B的坐标分别为(-2,1)、(1,0),AC=2,BC=2+1=3,ABA=90,ABC+ABC=90,BAC+ABC=90,BAC=ABC,BA=BA,ACB=BCA,ABCBAC,OC=OB+BC=1+1=2,AC=BC=3,点A的坐标为(2,3)故答案为(2,3)【点睛】此题考查旋转的性质,三角

17、形全等的判定和性质,点的坐标的确定解决问题的关键是作辅助线构造全等三角形12、【解析】根据100个和尚分100个馒头,正好分完大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可【详解】设大和尚x人,小和尚y人,由题意可得故答案为【点睛】本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组13、(-1, -6)【解析】直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案【详解】点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,A1(-1

18、,-2),将点A1向下平移4个单位,得到点A2,点A2的坐标是:(-1,-6)故答案为:(-1, -6)【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数14、2【解析】把点(2,1)代入y=x2+(m1)x+3,即可求出m的值.【详解】抛物线y=x2+(m1)x+3经过点(2,1),1= -4+2(m-1)+3,解得m=2,故答案为2.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式.15

19、、60【解析】试题解析:ACB=90,ABC=30,A=90-30=60,ABC绕点C顺时针旋转至ABC时点A恰好落在AB上,AC=AC,AAC是等边三角形,ACA=60,旋转角为60故答案为60.16、1【解析】解:原式=1故答案为117、14【解析】取AE中点I,连接IB,则正八边形ABCDEFGH是由8个与IDE全等的三角形构成【详解】解:取AE中点I,连接IB则正八边形ABCDEFGH是由8个与IAB全等的三角形构成I是AE的中点, = =3,则圆内接正八边形ABCDEFGH的面积为:83=14cm1故答案为14【点睛】本题考查正多边形的性质,解答此题的关键是作出辅助线构造出三角形三、

20、解答题(共7小题,满分69分)18、(1)5.6(2)货物MNQP应挪走,理由见解析【解析】(1)如图,作ADBC于点DRtABD中, AD=ABsin45=4在RtACD中,ACD=30AC=2AD=4 即新传送带AC的长度约为5.6米 (2)结论:货物MNQP应挪走 在RtABD中,BD=ABcos45=4 在RtACD中,CD=ACcos30= CB=CDBD=PC=PBCB 42.1=1.92 货物MNQP应挪走19、(1)FHE60;(2)篮板顶端 F 到地面的距离是 4.4 米【解析】(1)直接利用锐角三角函数关系得出cosFHE=,进而得出答案;(2)延长FE交CB的延长线于M,

21、过A作AGFM于G,解直角三角形即可得到结论【详解】(1 )由题意可得:cosFHE,则FHE60;(2)延长 FE 交 CB 的延长线于 M,过 A 作 AGFM 于 G, 在 RtABC 中,tanACB,ABBCtan750.603.7322.2392,GMAB2.2392,在 RtAGF 中,FAGFHE60,sinFAG,sin60,FG2.17(m),FMFG+GM4.4(米),答:篮板顶端 F 到地面的距离是 4.4 米【点睛】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.20、,2【解析】试题分析:首先将括号里面的进行通分,

22、然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和2.试题解析:原式=当a=0时,原式=2.考点:分式的化简求值.21、(1)2;3;(2)AD=BC;(3)作图见解析;BC=4;【解析】(1)根据等边三角形的性质可得出AB=AC=1、BAC=60,结合“旋补三角形”的定义可得出AB=AC=1、BAC=120,利用等腰三角形的三线合一可得出ADC=90,通过解直角三角形可求出AD的长度;由“旋补三角形”的定义可得出BAC=90=BAC、AB=AB、AC=AC,进而可得出ABCABC(SAS),根据全等三角形的性质可得出BC=BC=6,再利用直角三角形斜边上的中

23、线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B作BEAC,且BE=AC,连接CE、DE,则四边形ACCB为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出BAC=ABE、BA=AB、CA=EB,进而可证出BACABE(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外角圆圆心,过点P作PFBC于点F,由(2)的结论可求出PF的长度,在RtBPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度【详解】(1)ABC是等边三角形,BC=1,AB=AC=1

24、,BAC=60,AB=AC=1,BAC=120AD为等腰ABC的中线,ADBC,C=30,ADC=90在RtADC中,ADC=90,AC=1,C=30,AD=AC=2BAC=90,BAC=90在ABC和ABC中,ABCABC(SAS),BC=BC=6,AD=BC=3故答案为:2;3(2)AD=BC证明:在图1中,过点B作BEAC,且BE=AC,连接CE、DE,则四边形ACCB为平行四边形BAC+BAC=140,BAC+ABE=140,BAC=ABE在BAC和ABE中,BACABE(SAS),BC=AEAD=AE,AD=BC(3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABC

25、D的外接圆圆心,过点P作PFBC于点FPB=PC,PFBC,PF为PBC的中位线,PF=AD=3在RtBPF中,BFP=90,PB=5,PF=3,BF=1,BC=2BF=4【点睛】本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)利用解含30角的直角三角形求出AD=AC;牢记直角三角形斜边上的中线等于斜边的一半;(2)构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC;(3)利用(2)的结论结合勾股定理求出BF的长度22、(1)见解析(2)6【解析】(1)利用对应两角相等,证明两个三角形相似

26、ADFDEC.(2)利用ADFDEC,可以求出线段DE的长度;然后在在RtADE中,利用勾股定理求出线段AE的长度.【详解】解:(1)证明:四边形ABCD是平行四边形,ABCD,ADBCC+B=110,ADF=DECAFD+AFE=110,AFE=B,AFD=C在ADF与DEC中,AFD=C,ADF=DEC,ADFDEC(2)四边形ABCD是平行四边形,CD=AB=1由(1)知ADFDEC,在RtADE中,由勾股定理得:23、(1)证明见解析;(2)证明见解析;(3)EAF =m.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明DABEAC即可;(2)如图2中,延长DC到E,使得DB=

27、DE首先证明BDE是等边三角形,再证明ABDCBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM想办法证明AFEAFG,可得EAF=FAG=m.详(1)证明:如图1中,BAC=DAE,DAB=EAC,在DAB和EAC中,DABEAC,BD=EC(2)证明:如图2中,延长DC到E,使得DB=DEDB=DE,BDC=60,BDE是等边三角形,BD=BE,DBE=ABC=60,ABD=CBE,AB=BC,ABDCBE,AD=EC,BD=DE=DC+CE=DC+ADAD+CD=BD(3)如图3中,将AE绕点E逆时

28、针旋转m得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM由(1)可知EABGAC,1=2,BE=CG,BD=DC,BDE=CDM,DE=DM,EDBMDC,EM=CM=CG,EBC=MCD,EBC=ACF,MCD=ACF,FCM=ACB=ABC,1=3=2,FCG=ACB=MCF,CF=CF,CG=CM,CFGCFM,FG=FM,ED=DM,DFEM,FE=FM=FG,AE=AG,AF=AF,AFEAFG,EAF=FAG=m点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解

29、决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题24、(1)18,2,20(2)(3)当y=12时,x的值是1.2或1.6【解析】()根据路程、时间、速度三者间的关系通过计算即可求得相应答案;()根据路程=速度时间结合甲、乙的速度以及时间范围即可求得答案;()根据题意,得,然后分别将y=12代入即可求得答案.【详解】()由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发,当时间x=1.8 时,甲离开A的距离是101.8=18(km),当甲离开A的距离20km时,甲的行驶时间是2010=2(时),此时乙行驶的时间是21.5=0. 5(时),所以乙离开A的距离是400.5=20(km),故填写下表:()由题意知:y1=10x(0x1.5),y2=;()根据题意,得,当0x1.5时,由10x=12,得x=1.2,当1.5x2时,由30x+60=12,得x=1.6,因此,当y=12时,x的值是1.2或1.6.【点睛】本题考查了一次函数的应用,理清题意,弄清各数量间的关系是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁