《四川省武胜县重点达标名校2022-2023学年中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省武胜县重点达标名校2022-2023学年中考数学考前最后一卷含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )ABCD2下列各式正确的是( )ABCD3如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A5B10C10D154的相反数是( )AB2CD5实数a、b在数轴上的对应点的位置如图所示,则正确的结论是()Aa1Bab0Cab0Da+b06已知二次函数y=ax2+bx+c(a1)的图象如图所示,则下列结论:a、b同号;当x=1和x
3、=3时,函数值相等;4a+b=1;当y=2时,x的值只能取1;当1x5时,y1其中,正确的有()A2个B3个C4个D5个7如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是()A或B或C或D或8已知两组数据,2、3、4和3、4、5,那么下列说法正确的是()A中位数不相等,方差不相等B平均数相等,方差不相等C中位数不相等,平均数相等D平均数不相等,方差相等9下列函数中,y关于x的二次函数是( )Ayax2+bx+cByx(x1)Cy=Dy(x1)2x210被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积约为250000m2,则250000用科学记数法表示
4、为( )A25104m2B0.25106m2C2.5105m2D2.5106m211如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是ABCD12如图所示,ABC为等腰直角三角形,ACB=90,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,点A(3,n)在双曲线y=上,过点A作 AC
5、x轴,垂足为C线段OA的垂直平分线交OC于点B,则ABC周长的值是 14现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_15如图,PC是O的直径,PA切O于点P,AO交O于点B;连接BC,若,则_.16函数的定义域是_17中,高,则的周长为_。18如图,在ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若SAPD16cm1,SBQC15cm1,则图中阴影部分的面积为_cm1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)中华文明,源远流长;
6、中华汉字,寓意深广为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整请你根据统计图解答下列问题:参加比赛的学生共有_名;在扇形统计图中,m的值为_,表示“D等级”的扇形的圆心角为_度;组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率20(6分)如图,在O的内接四边形ABCD中,BCD=120,CA平分BCD(1)求证:ABD是等边三角形
7、;(2)若BD=3,求O的半径21(6分)如图所示,AB是O的直径,AE是弦,C是劣弧AE的中点,过C作CDAB于点D,CD交AE于点F,过C作CGAE交BA的延长线于点G求证:CG是O的切线求证:AFCF若sinG0.6,CF4,求GA的长22(8分)如图,在平面直角坐标系xOy中,一次函数yx与反比例函数的图象相交于点.(1)求a、k的值;(2)直线xb()分别与一次函数yx、反比例函数的图象相交于点M、N,当MN2时,画出示意图并直接写出b的值.23(8分)如图1,已知扇形MON的半径为,MON=90,点B在弧MN上移动,联结BM,作ODBM,垂足为点D,C为线段OD上一点,且OC=BM
8、,联结BC并延长交半径OM于点A,设OA=x,COM的正切值为y.(1)如图2,当ABOM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当OAC为等腰三角形时,求x的值.24(10分)如图,抛物线交X轴于A、B两点,交Y轴于点C ,(1)求抛物线的解析式;(2)平面内是否存在一点P,使以A,B,C,P为顶点的四边形为平行四边形,若存在直接写出P的坐标,若不存在请说明理由。25(10分)如图,已知反比例函数y与一次函数yk2xb的图象交于A(1,8),B(4,m)求k1,k2,b的值;求AOB的面积;若M(x1,y1),N(x2,y2)是反比例函数y的图象上的两点,且x
9、1x2,y1y2,指出点M,N各位于哪个象限,并简要说明理由26(12分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解根据调查统计结果,绘制了如图所示的不完整的三种统计图表对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n= ;(2)扇形统计图中,D部分扇形所对应的圆心角是 ;(3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的
10、小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平27(12分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析
11、】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.2、A【解析】,则B错;,则C;,则D错,故选A3、B【解析】作点E关于BC的对称点E,连接EG交BC于点F,此时四边形EFGH周长取最小值,过点G作GGAB于点G,如图所示,AE=CG,BE=BE,EG=AB=10,GG=AD=5,EG=,C四边形EFGH=2EG=10,故选B【点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键4、B【解析】根据相反数的性质可得结果.【详解】因为
12、-2+2=0,所以2的相反数是2,故选B【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .5、C【解析】直接利用a,b在数轴上的位置,进而分别对各个选项进行分析得出答案【详解】选项A,从数轴上看出,a在1与0之间,1a0,故选项A不合题意;选项B,从数轴上看出,a在原点左侧,b在原点右侧,a0,b0,ab0,故选项B不合题意;选项C,从数轴上看出,a在b的左侧,ab,即ab0,故选项C符合题意;选项D,从数轴上看出,a在1与0之间,1b2,|a|b|,a0,b0,所以a+b|b|a|0,故选项D不合题意故选:C【点睛】本题考查数轴和有理数的四则运算,解题的关键是掌握利用数轴表示有理数的
13、大小.6、A【解析】根据二次函数的性质和图象可以判断题目中各个小题是否成立【详解】由函数图象可得,a1,b1,即a、b异号,故错误,x=-1和x=5时,函数值相等,故错误,-2,得4a+b=1,故正确,由图象可得,当y=-2时,x=1或x=4,故错误,由图象可得,当-1x5时,y1,故正确,故选A【点睛】考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答7、B【解析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:或时,一次函数图象在反比例函数图象上方,使成立的取值范围是或,故选B【点睛】本题考查
14、了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.8、D【解析】分别利用平均数以及方差和中位数的定义分析,进而求出答案【详解】2、3、4的平均数为:(2+3+4)=3,中位数是3,方差为: (23)2+(33)2+(34)2= ;3、4、5的平均数为:(3+4+5)=4,中位数是4,方差为: (34)2+(44)2+(54)2= ;故中位数不相等,方差相等故选:D【点睛】本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.9、B【解析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=
15、ax2+bx+c(a,b,c为常数,a0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时, y=ax2+bx+c= bx+c,不是二次函数,故不符合题意; B. y=x(x1)=x2-x,是二次函数,故符合题意;C. 的自变量在分母中,不是二次函数,故不符合题意; D. y=(x1)2x2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a0)的函数叫做二次函数,据此求解即可.10、C【解析】科学记数法的表示形式为a10n,其中1|a|10,n为整数【详解】解:由科学记数法可知:2500
16、00 m2=2.5105m2,故选C【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键11、D【解析】【分析】根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案【详解】由二次函数的图象可知,当时,的图象经过二、三、四象限,观察可得D选项的图象符合,故选D【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.12、A【解析】此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可【详解】解:设CD的长为与正方形DEFG重合部分图
17、中阴影部分的面积为当C从D点运动到E点时,即时,当A从D点运动到E点时,即时,与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应故选A【点睛】本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围二、填空题:(本大题共6个小题,每小题4分,共24分)13、2【解析】先求出点A的坐标,根据点的坐标的定义得到OC=3,AC=2,再根据线段垂直平分线的性质可知AB=OB,由此推出ABC的周长=OC+AC【详解】由点A(3,n)在双曲线y=上得,n=2A(3,2)线段OA的垂直平分线交OC于点B,OB=AB则在ABC中, AC=2,ABBC=OBBC
18、=OC=3,ABC周长的值是214、1【解析】设小矩形的长为x,宽为y,则由图1可得5y=3x;由图2可知2y-x=2.【详解】解:设小矩形的长为x,宽为y,则可列出方程组,解得,则小矩形的面积为610=1.【点睛】本题考查了二元一次方程组的应用.15、26【解析】根据圆周角定理得到AOP=2C=64,根据切线的性质定理得到APO=90,根据直角三角形两锐角互余计算即可【详解】由圆周角定理得:AOP=2C=64PC是O的直径,PA切O于点P,APO=90,A=90AOP=9064=26故答案为:26【点睛】本题考查了切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键16、【解
19、析】根据二次根式的性质,被开方数大于等于0,可知:x-10,解得x的范围【详解】根据题意得:x-10,解得:x1故答案为:.【点睛】此题考查二次根式,解题关键在于掌握二次根式有意义的条件.17、32或42【解析】根据题意,分两种情况讨论:若ACB是锐角,若ACB是钝角,分别画出图形,利用勾股定理,即可求解.【详解】分两种情况讨论:若ACB是锐角,如图1,高, 在RtABD中,即:,同理:,的周长=9+5+15+13=42,若ACB是钝角,如图2,高, 在RtABD中,即:,同理:,的周长=9-5+15+13=32,故答案是:32或42. 【点睛】本题主要考查勾股定理,根据题意,画出图形,分类进
20、行计算,是解题的关键.18、41【解析】试题分析:如图,连接EFADF与DEF同底等高,SADF=SDEF,即SADF-SDPF=SDEF-SDPF,即SAPD=SEPF=16cm1,同理可得SBQC=SEFQ=15cm1,、阴影部分的面积为SEPF+SEFQ=16+15=41cm1考点:1、三角形面积,1、平行四边形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)20;(2)40,1;(3)【解析】试题分析:(1)根据等级为A的人数除以所占的百分比求出总人数;(2)根据D级的人数求得D等级扇形圆心角的度数和m的值;(3)列表得出所有等可能的情况数,
21、找出一男一女的情况数,即可求出所求的概率试题解析:解:(1)根据题意得:315%=20(人),故答案为20;(2)C级所占的百分比为100%=40%,表示“D等级”的扇形的圆心角为360=1;故答案为40、1(3)列表如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P恰好是一名男生和一名女生= =20、(1)详见解析;(2).【解析】(1)因为AC平分BCD,BCD120,根据角平分线的定义得:ACDACB60,根据同弧所对的圆周角相等,得ACDABD,ACBADB,ABDADB60.根据三个角是60的三角形是等边三角形得ABD是等边三角形.(2)作直径DE,连结BE
22、,由于ABD是等边三角形,则BAD60,由同弧所对的圆周角相等,得BEDBAD60.根据直径所对的圆周角是直角得,EBD90,则EDB30,进而得到DE2BE.设EBx,则ED2x,根据勾股定理列方程求解即可.【详解】解:(1)BCD=120,CA平分BCD,ACD=ACB=60,由圆周角定理得,ADB=ACB=60,ABD=ACD=60,ABD是等边三角形;(2)连接OB、OD,作OHBD于H,则DH=BD=,BOD=2BAD=120,DOH=60,在RtODH中,OD=,O的半径为【点睛】本题是一道圆的简单证明题,以圆的内接四边形为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造
23、直角三角形,再通过三角函数或勾股定理来求解线段的长度.21、(1)见解析;(2)见解析;(3)AG1【解析】(1)利用垂径定理、平行的性质,得出OCCG,得证CG是O的切线.(2)利用直径所对圆周角为和垂直的条件得出2=B,再根据等弧所对的圆周角相等得出1=B,进而证得1=2,得证AF=CF.(3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.【详解】(1)证明:连结OC,如图,C是劣弧AE的中点,OCAE,CGAE,CGOC,CG是O的切线;(2)证明:连结AC、BC,AB是O的直径,ACB90,2+BCD90,而CDAB,B+BCD90,B2,C是劣弧AE的中点,,1B
24、,12,AFCF;(3)解:CGAE,FADG,sinG0.6,sinFAD0.6,CDA90,AFCF4,DF2.4,AD3.2,CDCF+DF6.4,AFCG,, DG,AGDGAD1【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键.22、(1),k=2;(2)b=2或1【解析】(1)依据直线y=x与双曲线(k0)相交于点,即可得到a、k的值;(2)分两种情况:当直线x=b在点A的左侧时,由x=2,可得x=1,即b=1;当直线x=b在点A的右侧时,由x2,可得x=2,即b=2【详解】(1)直线y=x与双曲线(k0)相交于点,解得:k=2
25、;(2)如图所示:当直线x=b在点A的左侧时,由x=2,可得:x=1,x=2(舍去),即b=1;当直线x=b在点A的右侧时,由x2,可得x=2,x=1(舍去),即b=2;综上所述:b=2或1【点睛】本题考查了利用待定系数法求函数解析式以及函数的图象与解析式的关系,解题时注意:点在图象上,就一定满足函数的解析式23、(1)证明见解析;(2) .();(3) .【解析】分析:(1)先判断出ABM=DOM,进而判断出OACBAM,即可得出结论;(2)先判断出BD=DM,进而得出,进而得出AE=,再判断出,即可得出结论;(3)分三种情况利用勾股定理或判断出不存在,即可得出结论详解:(1)ODBM,AB
26、OM,ODM=BAM=90ABM+M=DOM+M,ABM=DOMOAC=BAM,OC=BM,OACBAM, AC=AM(2)如图2,过点D作DEAB,交OM于点EOB=OM,ODBM,BD=DMDEAB,AE=EMOM=,AE=DEAB, ()(3)(i) 当OA=OC时在RtODM中,解得,或(舍)(ii)当AO=AC时,则AOC=ACOACOCOB,COB=AOC,ACOAOC,此种情况不存在()当CO=CA时,则COA=CAO=CAOM,M=90,90,45,BOA=290BOA90,此种情况不存在即:当OAC为等腰三角形时,x的值为点睛:本题是圆的综合题,主要考查了相似三角形的判定和性
27、质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键24、(1);(2) (3,-4) 或(5,4)或(-5,4)【解析】(1)设|OA|=1,确定A,B,C三点坐标,然后用待定系数法即可完成;(2)先画出存在的点,然后通过平移和计算确定坐标;【详解】解:(1)设|OA|=1,则A(-1,0),B(4,0)C(0,4)设抛物线的解析式为y=ax2+bx+c则有: 解得所以函数解析式为:(2)存在,(3,-4) 或(5,4)或(-5,4)理由如下:如图:P1相当于C点向右平移了5个单位长度,则坐标为(5,4);P2相当于C点向左平移了5个单位长度,则坐标为(-5
28、,4);设P3坐标为(m,n)在第四象限,要使A P3BC是平行四边形,则有A P3=BC, B P3=AC 即 (舍去)P3坐标为(3,-4)【点睛】本题主要考查了二次函数综合题,此题涉及到待定系数法求二次函数解析式,通过作图确认平行四边形存在,然后通过观察和计算确定P点坐标;解题的关键在于规范作图,以便于树形结合.25、 (1) k11,b6(1)15(3)点M在第三象限,点N在第一象限【解析】试题分析:(1)把A(1,8)代入求得=8,把B(-4,m)代入求得m=-1,把A(1,8)、B(-4,-1)代入求得、b的值;(1)设直线y=1x+6与x轴的交点为C,可求得OC的长,根据SABC
29、=SAOC+SBOC即可求得AOB的面积;(3)由可知有三种情况,点M、N在第三象限的分支上,点M、N在第一象限的分支上, M在第三象限,点N在第一象限,分类讨论把不合题意的舍去即可试题解析:解:(1)把A(1,8), B(-4,m)分别代入,得=8,m=-1A(1,8)、B(-4,-1)在图象上,解得,(1)设直线y=1x+6与x轴的交点为C,当y=0时,x=-3,OC=3SABC=SAOC+SBOC=(3)点M在第三象限,点N在第一象限若0,点M、N在第三象限的分支上,则,不合题意;若0,点M、N在第一象限的分支上,则,不合题意;若0,M在第三象限,点N在第一象限,则0,符合题意考点:反比
30、例函数与一次函数的交点坐标;用待定系数法求函数表达式;反比例函数的性质26、 (1)40;(2)144;(3)作图见解析;(4)游戏规则不公平【解析】(1)根据统计图可以求出这次调查的n的值;(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;(4)根据题意可以写出树状图,从而可以解答本题【详解】解:(1)n%=110%15%35%=40%,故答案为40;(2)扇形统计图中D部分扇形所对应的圆心角是:36040%=144,故答案为144;(3)调查的结果为D等级的人数为:40040%=160,故补全的条形统计图如右图所示,(4)由题意可得,树状图如右图所示,P(奇数) P(偶数)故游戏规则不公平【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小27、.【解析】试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.试题解析:解:画树状图如答图:共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,P(A,C两个区域所涂颜色不相同)=.考点:1画树状图或列表法;2概率