《四川省德阳地区重点达标名校2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《四川省德阳地区重点达标名校2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1如图,在中, ,以边的中点为圆心,作半圆与相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是( )ABCD2已知x2-2x-3=0,则2x2-4x的值为( )A-6B6C-2或6D-2或303一元二次方程的根是( )ABCD4若直线y=kx+b图象如图所示,则直线y=bx+k的图象大致是( )ABCD5二次函数(a、b、c是常数,且a0)的图象如图所示,下列结论错误的是( )A4acb2Babc0Cb+c3aDab6某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )A94分,96分B96分
3、,96分C94分,96.4分D96分,96.4分7某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元ABCD8如图,一个几何体由5个大小相同、棱长为1的正方体搭成,则这个几何体的左视图的面积为()A5B4C3D29某反比例函数的图象经过点(-2,3),则此函数图象也经过( )A(2,-3)B(-3,3)C(2,3)D(-4,6)10等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是( )A9 cm B12 cm C9 cm或12 cm D14 cm11某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y
4、=4x+440,要获得最大利润,该商品的售价应定为A60元 B70元 C80元 D90元12如图,在菱形ABCD中,M,N分别在AB,CD上,且AMCN,MN与AC交于点O,连接BO若DAC26,则OBC的度数为()A54B64C74D26二、填空题:(本大题共6个小题,每小题4分,共24分)13如果一个正多边形的中心角为72,那么这个正多边形的边数是 14写出一个平面直角坐标系中第三象限内点的坐标:(_)15若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有实根,则=_16已知一元二次方程x24x30的两根为m,n,则mn= 17如图,已知点E是菱形ABCD的AD边上的一点,连接B
5、E、CE,M、N分别是BE、CE的中点,连接MN,若A=60,AB=4,则四边形BCNM的面积为_18已知关于x的方程有两个不相等的实数根,则m的最大整数值是 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,一位测量人员,要测量池塘的宽度 的长,他过 两点画两条相交于点 的射线,在射线上取两点 ,使 ,若测得 米,他能求出 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案20(6分)如图,要修一个育苗棚,棚的横截面是,棚高,长,棚顶与地面的夹角为求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位)(参考数据:,)21(
6、6分)如图,AB是O的直径,CD为弦,且ABCD于E,点M为上一动点(不包括A,B两点),射线AM与射线EC交于点F(1)如图,当F在EC的延长线上时,求证:AMDFMC(2)已知,BE2,CD1求O的半径;若CMF为等腰三角形,求AM的长(结果保留根号)22(8分) (1)计算:3tan30+|2|+()1(3)0(1)2018.(2)先化简,再求值:(x),其中x=,y=1.23(8分)先化简,再求值:(x+1),其中x=sin30+21+24(10分)如图1,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx+c(a0)相交于点A(1,0)和点D(4,5),并与y轴交于点C,抛物
7、线的对称轴为直线x=1,且抛物线与x轴交于另一点B(1)求该抛物线的函数表达式;(2)若点E是直线下方抛物线上的一个动点,求出ACE面积的最大值;(3)如图2,若点M是直线x=1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由25(10分)如图,已知ABC,按如下步骤作图:分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;连接MN,分别交AB、AC于点D、O;过C作CEAB交MN于点E,连接AE、CD(1)求证:四边形ADCE是菱形;(2)当ACB=90,BC=6,ADC的周长为18时,求四边形AD
8、CE的面积26(12分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题已知,ABC中,ABAC,BAC,点D、E在边BC上,且DAE(1)如图1,当60时,将AEC绕点A顺时针旋转60到AFB的位置,连接DF,求DAF的度数;求证:ADEADF;(2)如图2,当90时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当120,BD4,CE5时,请直接写出DE的长为 27(12分)豆豆妈妈用小米运动手环记录每天的运动情况,下面是她6天的数据记录(不完整):(1)4月5日,4月6日,豆豆妈妈没来得及作记录,只有手机图片,请你根据图片数
9、据,帮她补全表格(2)豆豆利用自己学习的统计知识,把妈妈步行距离与燃烧脂肪情况用如下统计图表示出来,请你根据图中提供的信息写出结论: (写一条即可)(3)豆豆还帮妈妈分析出步行距离和卡路里消耗数近似成正比例关系,豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为 公里(直接写出结果,精确到个位)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】如图,设O与AC相切于点E,连接OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,
10、P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题【详解】解:如图,设O与AC相切于点E,连接OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,AB=10,AC=8,BC=6,AB2=AC2+BC2,C=10,OP1B=10,OP1ACAO=OB,P1C=P1B,OP1=AC=4,P1Q1最小值为OP1-OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,PQ长的最大值与最小值的和是1故选:C【点睛】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最
11、大值、最小值时的位置,属于中考常考题型2、B【解析】方程两边同时乘以2,再化出2x2-4x求值解:x2-2x-3=02(x2-2x-3)=02(x2-2x)-6=02x2-4x=6故选B3、D【解析】试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题原方程可化为:,因此或,所以故选D考点:一元二次方程的解法因式分解法提公因式法4、A【解析】根据一次函数y=kx+b的图象可知k1,b1,再根据k,b的取值范围确定一次函数y=bx+k图象在坐标平面内的位置关系,即可判断【详解】解:一次函数y=kx+b的图象可知k1,b1,-b1,一次函数y=bx+k的图象过一、二、三象限,
12、与y轴的正半轴相交,故选:A【点睛】本题考查了一次函数的图象与系数的关系函数值y随x的增大而减小k1;函数值y随x的增大而增大k1;一次函数y=kx+b图象与y轴的正半轴相交b1,一次函数y=kx+b图象与y轴的负半轴相交b1,一次函数y=kx+b图象过原点b=15、D【解析】根据二次函数的图象与性质逐一判断即可求出答案【详解】由图象可知:0,b24ac0,b24ac,故A正确;抛物线开口向上,a0,抛物线与y轴的负半轴,c0,抛物线对称轴为x=0,b0,abc0,故B正确;当x=1时,y=a+b+c0,4a0,a+b+c4a,b+c3a,故C正确;当x=1时,y=ab+c0,ab+cc,ab
13、0,ab,故D错误;故选D考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用6、D【解析】解:总人数为610%=60(人),则91分的有6020%=12(人), 98分的有60-6-12-15-9=18(人), 第30与31个数据都是96分,这些职工成绩的中位数是(96+96)2=96; 这些职工成绩的平均数是(926+9112+9615+9818+1009)60 =(552+1128+1110+1761+900)60 =578160 =96.1 故选D【点睛】本题考查1.中位数;2.扇形统计图;3.条
14、形统计图;1.算术平均数,掌握概念正确计算是关键7、B【解析】设商品进价为x元,则售价为每件0.8200元,由利润=售价-进价建立方程求出其解即可【详解】解:设商品的进价为x元,售价为每件0.8200元,由题意得0.8200=x+40解得:x=120答:商品进价为120元故选:B【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键8、C【解析】根据左视图是从左面看到的图形求解即可.【详解】从左面看,可以看到3个正方形,面积为3,故选:C【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是
15、俯视图,从左面看到的图形是左视图.9、A【解析】设反比例函数y=(k为常数,k0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断【详解】设反比例函数y=(k为常数,k0),反比例函数的图象经过点(-2,3),k=-23=-6,而2(-3)=-6,(-3)(-3)=9,23=6,-46=-24,点(2,-3)在反比例函数y=- 的图象上故选A【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k10、B【解析】当腰长是2 cm时,因为2+22,符
16、合三角形三边关系,此时周长是12 cm故选B11、C【解析】设销售该商品每月所获总利润为w,则w=(x50)(4x+440)=4x2+640x22000=4(x80)2+3600,当x=80时,w取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选C12、B【解析】根据菱形的性质以及AMCN,利用ASA可得AMOCNO,可得AOCO,然后可得BOAC,继而可求得OBC的度数【详解】四边形ABCD为菱形,ABCD,ABBC,MAONCO,AMOCNO,在AMO和CNO中,AMOCNO(ASA),AOCO,ABBC,BOAC,BOC90,DAC26,BCADAC26,O
17、BC902664故选B【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质二、填空题:(本大题共6个小题,每小题4分,共24分)13、5【解析】试题分析:中心角的度数=,考点:正多边形中心角的概念14、答案不唯一,如:(1,1),横坐标和纵坐标都是负数即可【解析】让横坐标、纵坐标为负数即可【详解】在第三象限内点的坐标为:(1,1)(答案不唯一)故答案为答案不唯一,如:(1,1),横坐标和纵坐标都是负数即可15、【解析】因为方程有实根,所以0,配方整理得(a+2b)2+(a1)20,再利用非负性求出a,b的值即可.【详解】方程有实根,0,即=4(1+
18、a)24(3a2+4ab+4b2+2)0,化简得:2a2+4ab+4b22a+10,(a+2b)2+(a1)20,而(a+2b)2+(a1)20,a+2b=0,a1=0,解得a=1,b=,=.故答案为.16、1【解析】试题分析:由m与n为已知方程的解,利用根与系数的关系求出m+n=4,mn=3,将所求式子利用完全平方公式变形后,即mn+=3mn=16+9=1故答案为1考点:根与系数的关系17、3【解析】如图,连接BD首先证明BCD是等边三角形,推出SEBC=SDBC=42=4,再证明EMNEBC,可得=()2=,推出SEMN=,由此即可解决问题.【详解】解:如图,连接BD四边形ABCD是菱形,
19、AB=BC=CD=AD=4,A=BCD=60,ADBC,BCD是等边三角形,SEBC=SDBC=42=4,EM=MB,EN=NC,MNBC,MN=BC,EMNEBC,=()2=,SEMN=,S阴=4-=3,故答案为3【点睛】本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型18、1【解析】试题分析:关于x的方程有两个不相等的实数根,.m的最大整数值为1考点:1.一元二次方程根的判别式;2.解一元一次不等式三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、可以求出A、B之间的距离为111
20、.6米.【解析】根据,(对顶角相等),即可判定,根据相似三角形的性质得到,即可求解.【详解】解:,(对顶角相等),解得米所以,可以求出、之间的距离为米【点睛】考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.20、33.3【解析】根据解直角三角形的知识先求出AC的值,再根据矩形的面积计算方法求解即可.【详解】解:AC= = 矩形面积=1033.3(平方米)答:覆盖在顶上的塑料薄膜需33.3平方米【点睛】本题考查了解直角三角形的应用,掌握正弦的定义是解题的关键.21、(1)详见解析;(2)2;1或【解析】(1)想办法证明AMDADC,FMCADC即可解决问题;(2)在RtOCE中
21、,利用勾股定理构建方程即可解决问题;分两种情形讨论求解即可.【详解】解:(1)证明:如图中,连接AC、ADABCD,CEED,ACAD,ACDADC,AMDACD,AMDADC,FMC+AMC110,AMC+ADC110,FMCADC,FMCADC,FMCAMD(2)解:如图1中,连接OC设O的半径为r在RtOCE中,OC2OE2+EC2,r2(r2)2+42,r2FMCACDF,只有两种情形:MFFC,FMMC如图中,当FMFC时,易证明CMAD,AMCD1如图中,当MCMF时,连接MO,延长MO交AD于HMFCMCFMAD,FMCAMD,ADMMAD,MAMD,MHAD,AHDH,在RtA
22、ED中,AD,AH,tanDAE,OH,MH2+,在RtAMH中,AM【点睛】本题考查了圆的综合题:熟练掌握与圆有关的性质、圆的内接正方形的性质和旋转的性质;灵活利用全等三角形的性质;会利用面积的和差计算不规则几何图形的面积22、 (1)3;(2) xy,1【解析】(1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题【详解】(1)3tan30+|2-|+()-1-(3-)0-(-1)2018=3+2-+3-1-1,=+2+3-1-1,=3;(2)(x),=,=x-y,当x=,y=-
23、1时,原式=+1=1【点睛】本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法23、-5【解析】根据分式的运算法则以及实数的运算法则即可求出答案【详解】当x=sin30+21+时,x=+2=3,原式=5.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型24、(1)y=x2+2x3;(2);(3)详见解析.【解析】试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;(2)过点E作EFy轴,交AD与点F,过点C作CH
24、EF,垂足为H设点E(m,m2+2m-3),则F(m,-m+1),则EF=-m2-3m+4,然后依据ACE的面积=EFA的面积-EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得ACE的最大值即可;(3)当AD为平行四边形的对角线时设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=-2代入求得对应的y值,然后依据,可求得a的值;当AD为平行四边形的边时设点M的坐标为(-1,a)则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值试题解析:(1)A(1,0),抛物线的对称轴为直
25、线x1,B(3,0),设抛物线的表达式为ya(x3)(x1),将点D(4,5)代入,得5a5,解得a1,抛物线的表达式为yx22x3;(2)过点E作EFy轴,交AD与点F,交x轴于点G,过点C作CHEF,垂足为H.设点E(m,m22m3),则F(m,m1)EFm1m22m3m23m4.SACESEFASEFCEFAGEFHCEFOA (m)2.ACE的面积的最大值为;(3)当AD为平行四边形的对角线时:设点M的坐标为(1,a),点N的坐标为(x,y)平行四边形的对角线互相平分,解得x2,y5a,将点N的坐标代入抛物线的表达式,得5a3,解得a8,点M的坐标为(1,8),当AD为平行四边形的边时
26、:设点M的坐标为(1,a),则点N的坐标为(6,a5)或(4,a5),将x6,ya5代入抛物线的表达式,得a536123,解得a16,M(1,16),将x4,ya5代入抛物线的表达式,得a51683,解得a26,M(1,26),综上所述,当点M的坐标为(1,26)或(1,16)或(1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形25、(1)详见解析;(2)1【解析】(1)利用直线DE是线段AC的垂直平分线,得出ACDE,即AOD=COE=90,从而得出AODCOE,即可得出四边形ADCE是菱形.(2)利用当ACB=90时,ODBC,即有ADOABC,即可由相似三角形的性质和勾股定理
27、得出OD和AO的长,即根据菱形的性质得出四边形ADCE的面积.【详解】(1)证明:由题意可知:分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;直线DE是线段AC的垂直平分线,ACDE,即AOD=COE=90;且AD=CD、AO=CO,又CEAB,1=2,在AOD和COE中 AODCOE(AAS),OD=OE,A0=CO,DO=EO,四边形ADCE是平行四边形,又ACDE,四边形ADCE是菱形;(2)解:当ACB=90时,ODBC,即有ADOABC, 又BC=6,OD=3,又ADC的周长为18,AD+AO=9, 即AD=9AO, 可得AO=4,DE=6,AC=8, 【点睛
28、】考查线段垂直平分线的性质,菱形的判定,相似三角形的判定与性质等,综合性比较强.26、(1)30见解析(2)BD2+CE2DE2(3)【解析】(1)利用旋转的性质得出FAB=CAE,再用角的和即可得出结论;利用SAS判断出ADEADF,即可得出结论;(2)先判断出BF=CE,ABF=ACB,再判断出DBF=90,即可得出结论;(3)同(2)的方法判断出DBF=60,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论【详解】解:(1)由旋转得,FABCAE,BAD+CAEBACDAE603030,DAFBAD+BAFBAD+CAE30;由旋转知,AFAE,BAFCAE,BAF+
29、BADCAE+BADBACDAEDAE,在ADE和ADF中,ADEADF(SAS);(2)BD2+CE2DE2,理由:如图2,将AEC绕点A顺时针旋转90到AFB的位置,连接DF,BFCE,ABFACB,由(1)知,ADEADF,DEDF,ABAC,BAC90,ABCACB45,DBFABC+ABFABC+ACB90,根据勾股定理得,BD2+BF2DF2,即:BD2+CE2DE2;(3)如图3,将AEC绕点A顺时针旋转90到AFB的位置,连接DF,BFCE,ABFACB,由(1)知,ADEADF,DEDF,BFCE5,ABAC,BAC90,ABCACB30,DBFABC+ABFABC+ACB6
30、0,过点F作FMBC于M,在RtBMF中,BFM90DBF30,BF5,BD4,DMBDBM,根据勾股定理得, ,DEDF,故答案为【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键27、(1)见解析;(2)步行距离越大,燃烧脂肪越多;(3)1【解析】(1)依据手机图片的中的数据,即可补全表格;(2)依据步行距离与燃烧脂肪情况,即可得出步行距离越大,燃烧脂肪越多;(3)步行距离和卡路里消耗数近似成正比例关系,即可预估她一天步行距离【详解】解:(1)由图可得,4月5日的步行数为7689,步行距离为5.0公里,卡路里消耗为142千卡,燃烧脂肪18克;4月6日的步行数为15638,步行距离为1.0公里,卡路里消耗为234千卡,燃烧脂肪30克;(2)由图可得,步行距离越大,燃烧脂肪越多;故答案为:步行距离越大,燃烧脂肪越多;(3)由图可得,步行时每公里约消耗卡路里25千卡,故豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为1公里故答案为:1【点睛】本题考查的是条形统计图和折线统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确