北京市海淀区人大附中2022-2023学年中考数学猜题卷含解析.doc

上传人:lil****205 文档编号:87995658 上传时间:2023-04-19 格式:DOC 页数:21 大小:986.50KB
返回 下载 相关 举报
北京市海淀区人大附中2022-2023学年中考数学猜题卷含解析.doc_第1页
第1页 / 共21页
北京市海淀区人大附中2022-2023学年中考数学猜题卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《北京市海淀区人大附中2022-2023学年中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《北京市海淀区人大附中2022-2023学年中考数学猜题卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E若FG2,则AE的长度为( )A6B8C10D122如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1

2、个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:该正六边形的边长为1;当t3时,机器人一定位于点O;机器人一定经过点D;机器人一定经过点E;其中正确的有( )ABCD3二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( ) ABCD4如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()ABCD5我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是A6.75103吨B67.5

3、103吨C6.75104吨D6.75105吨6在平面直角坐标系xOy中,若点P(3,4)在O内,则O的半径r的取值范围是( )A0r3Br4C0r5Dr57如图,直线ykx+b与x轴交于点(4,0),则y0时,x的取值范围是()Ax4Bx0Cx4Dx08在RtABC中,C=90,BC=a,AC=b,AB=c,下列各式中正确的是()Aa=bcosABc=asinACacotA=bDatanA=b9已知O的半径为5,若OP=6,则点P与O的位置关系是()A点P在O内B点P在O外C点P在O上D无法判断10如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列

4、各点中不能作为平行四边形顶点坐标的是()A(3,1)B(-4,1)C(1,-1)D(-3,1)11如图,小刚从山脚A出发,沿坡角为的山坡向上走了300米到达B点,则小刚上升了( )A米B米C米D米12如图,A、B、C三点在正方形网格线的交点处,若将ABC绕着点A逆时针旋转得到ACB,则tanB的值为( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在中,,为边的高,点在轴上,点在轴上,点在第一象限,若从原点出发,沿轴向右以每秒1个单位长的速度运动,则点随之沿轴下滑,并带动在平面内滑动,设运动时间为秒,当到达原点时停止运动连接,线段的长随的变化而变化,当最大时,_.当

5、的边与坐标轴平行时,_.14如果点A(1,4)、B(m,4)在抛物线ya(x1)2+h上,那么m的值为_15如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则DE=_16已知线段a=4,b=1,如果线段c是线段a、b的比例中项,那么c=_17中国的九章算术是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。问牛羊各值金几何?”译文:今有牛5头,羊2头,共值金10两,牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金两、两,依题意,可列出方程为_ .18=_三、解答题:(本大题共9个小题,共78分,解答应写

6、出文字说明、证明过程或演算步骤19(6分)路边路灯的灯柱垂直于地面,灯杆的长为2米,灯杆与灯柱成角,锥形灯罩的轴线与灯杆垂直,且灯罩轴线正好通过道路路面的中心线(在中心线上).已知点与点之间的距离为12米,求灯柱的高.(结果保留根号)20(6分)已知:如图,E是BC上一点,ABEC,ABCD,BCCD求证:ACED21(6分)(1)计算:22+(1)0+2sin60(2)先化简,再求值:(),其中x=122(8分)如图,AB是O的直径,点C在O上,CE AB于E, CD平分ECB, 交过点B的射线于D, 交AB于F, 且BC=BD(1)求证:BD是O的切线;(2)若AE=9, CE=12, 求

7、BF的长23(8分)解不等式组,并把它的解集表示在数轴上24(10分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?25(10分)

8、如图,梯形ABCD中,ADBC,DCBC,且B=45,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作FAE=45交射线BC于点E、交边DCN于点N,联结EF(1)当CM:CB=1:4时,求CF的长(2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域(3)当ABMEFN时,求CM的长26(12分)如图1,已知抛物线y=x2+bx+c与x轴交于A(1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D在直线l上是否存在点M,使得四边形CDPM是平

9、行四边形?若存在,求出点M的坐标;若不存在,请说明理由(3)如图2,连接BC,PB,PC,设PBC的面积为S求S关于t的函数表达式;求P点到直线BC的距离的最大值,并求出此时点P的坐标27(12分)先化简再求值:(1),其中x参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据正方形的性质可得出ABCD,进而可得出ABFGDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由ADBC,DG=CG,可得出AG=GE,即可求出AE=2AG=1【详解】解:四边形ABCD为正方形,AB=CD,ABCD,

10、 ABF=GDF,BAF=DGF,ABFGDF,=2,AF=2GF=4,AG=2ADBC,DG=CG,=1,AG=GEAE=2AG=1故选:D【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键2、C【解析】根据图象起始位置猜想点B或F为起点,则可以判断正确,错误结合图象判断3t4图象的对称性可以判断正确结合图象易得正确【详解】解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1故正确;观察图象t在34之间时,图象具有对称性则可知,机器人在OB或OF上,则当t3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,

11、故正确;所有点中,只有点D到A距离为2个单位,故正确;因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故错误故选:C【点睛】本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势3、D【解析】根据二次函数图象开口向上得到a0,再根据对称轴确定出b,根据二次函数图形与轴的交点个数,判断的符号,根据图象发现当x=1时y=a+b+c0,对称轴为直线 b0,当x=1时y=a+b+c0,的图象经过第二四象限,且与y轴的正半轴相交,反比例函数图象在第二、四象限,只有D选项图象符合.故选:D.【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关

12、系是解题的关键.4、B【解析】先利用三角函数求出BAE=45,则BE=AB=,DAE=45,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCDSABES扇形EAD进行计算即可【详解】解:AE=AD=2,而AB=,cosBAE=,BAE=45,BE=AB=,BEA=45ADBC,DAE=BEA=45,图中阴影部分的面积=S矩形ABCDSABES扇形EAD=2=21故选B【点睛】本题考查了扇形面积的计算阴影面积常用的方法:直接用公式法;和差法;割补法求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积5、C【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a10n,其中

13、1|a|10,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于1还是小于1当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0)67500一共5位,从而67 500=6.752故选C6、D【解析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围【详解】点P的坐标为(3,4),OP1点P(3,4)在O内,OPr,即r1故选D【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系7、A【解析】试题

14、分析:充分利用图形,直接从图上得出x的取值范围由图可知,当y1时,x-4,故选C.考点:本题考查的是一次函数的图象点评:解答本题的关键是掌握在x轴下方的部分y1,在x轴上方的部分y18、C【解析】C=90,cosA=,sinA= ,tanA=,cotA=,ccosA=b,csinA=a,btanA=a,acotA=b,只有选项C正确,故选C.【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.9、B【解析】比较OP与半径的大小即可判断.【详解】,点P在外,故选B【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设的半径为r,点P到圆心的距离,则有:点P

15、在圆外;点P在圆上;点P在圆内.10、B【解析】作出图形,结合图形进行分析可得.【详解】如图所示:以AC为对角线,可以画出AFCB,F(-3,1);以AB为对角线,可以画出ACBE,E(1,-1);以BC为对角线,可以画出ACDB,D(3,1),故选B.11、A【解析】利用锐角三角函数关系即可求出小刚上升了的高度【详解】在RtAOB中,AOB=90,AB=300米,BO=ABsin=300sin米故选A【点睛】此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键12、D【解析】过C点作CDAB,垂足为D,根据旋转性质可知,B=B,把求ta

16、nB的问题,转化为在RtBCD中求tanB【详解】过C点作CDAB,垂足为D根据旋转性质可知,B=B在RtBCD中,tanB=,tanB=tanB=故选D【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法二、填空题:(本大题共6个小题,每小题4分,共24分)13、4 【解析】(1)由等腰三角形的性质可得AD=BD,从而可求出OD=4,然后根据当O,D,C共线时,OC取最大值求解即可;(2)根据等腰三角形的性质求出CD,分ACy轴、BCx轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可【详解】(1),当O,D,C共线时,OC取最大值,此时ODAB.,AOB

17、为等腰直角三角形, ;(2)BC=AC,CD为AB边的高,ADC=90,BD=DA=AB=4,CD=3,当ACy轴时,ABO=CAB,RtABORtCAD,即,解得,t=,当BCx轴时,BAO=CBD,RtABORtBCD,即,解得,t= ,则当t=或时,ABC的边与坐标轴平行故答案为t=或【点睛】本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键14、1【解析】根据函数值相等两点关于对称轴对称,可得答案【详解】由点A(1,4)、B(m,4)在抛物线y=a(x1)2+h上,得:(1,4)与(m,4)关于

18、对称轴x=1对称,m1=1(1),解得:m=1故答案为:1【点睛】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m1=1(1)是解题的关键15、【解析】连接OD,OC,AD,由O的直径AB=7可得出OD=OC,故可得出OD=CD=OC,所以DOC=60,DAC=30,根据勾股定理可求出AD的长,在RtADE中,利用DAC的正切值求解即可【详解】解:连接OD,OC,AD,半圆O的直径AB=7,OD=OC=,CD=,OD=CD=OCDOC=60,DAC=30又AB=7,BD=5, 在RtADE中,DAC=30,DE=ADtan30 故答案为【点睛】本题考查了圆周角定理、

19、等边三角形的判定与性质,勾股定理的应用等知识;综合性比较强.16、1【解析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负【详解】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积则c1=41,c=1,(线段是正数,负值舍去),故c=1故答案为1【点睛】本题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数17、【解析】【分析】牛、羊每头各值金两、两,根据等量关系:“牛5头,羊2头,共值金10两”,“牛2头,羊5头,共值金8两”列方程组即可.【详解】牛、羊每头各值金两、两,由题意得:,故答案为:.【点睛】本题考查了二元一次方程组的应用,弄清题意,找

20、出等量关系列出方程组是关键.18、2;【解析】试题解析:先求-2的平方4,再求它的算术平方根,即:.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、【解析】设灯柱BC的长为h米,过点A作AHCD于点H,过点B作BEAH于点E,构造出矩形BCHE,RtAEB,然后解直角三角形求解【详解】解:设灯柱的长为米,过点作于点过点做于点四边形为矩形,又在中,又在中,解得,(米)灯柱的高为米.20、见解析【解析】试题分析:已知ABCD,根据两直线平行,内错角相等可得B=ECD,再根据SAS证明ABCECD全,由全等三角形对应边相等即可得AC=ED试题解析:ABCD,B=

21、DCE在ABC和ECD中,ABCECD(SAS),AC=ED考点:平行线的性质;全等三角形的判定及性质21、(1) (2) 【解析】(1)根据负整数指数幂、二次根式、零指数幂和特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题【详解】解:(1)原式=+1+2=+1+=;(2)原式=,当x=1时,原式=【点睛】本题考查分式的化简求值、绝对值、零指数幂、负整数指数幂和特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法22、(1)证明见解析;(2)1【解析】试题分析:(1)根据垂直的定义可得CEB=90,然后根据角平分线的

22、性质和等腰三角形的性质,判断出1=D,从而根据平行线的判定得到CEBD,根据平行线的性质得DBA=CEB,由此可根据切线的判定得证结果;(2)连接AC,由射影定理可得,进而求得EB的长,再由勾股定理求得BD=BC的长,然后由“两角对应相等的两三角形相似”的性质证得EFCBFD,再由相似三角形的性质得出结果试题解析:(1)证明:,CD平分,BC=BD,AB是O的直径,BD是O的切线(2)连接AC,AB是O直径,可得在RtCEB中,CEB=90,由勾股定理得 ,EFC =BFD,EFCBFDBF=1考点:切线的判定,相似三角形,勾股定理23、不等式组的解是x3;图见解析【解析】先求出每个不等式的解

23、集,再求出不等式组的解集即可【详解】解:解不等式,得x3,解不等式,得x1.5,不等式组的解是x3,在数轴上表示为:【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键24、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元【解析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a

24、辆,则B型公交车(10-a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可【详解】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元(2)设购买A型公交车a辆,则B型公交车(10a)辆,由题意得,解得:,因为a是整数,所以a6,7,8;则(10a)4,3,2;三种方案:购买A型公交车6辆,则B型公交车4辆:1006+15041200万元;购买A型公交车7辆,则B型公交车3辆:1007+15031150万元

25、;购买A型公交车8辆,则B型公交车2辆:1008+15021100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题25、 (1) CF=1;(2)y=,0x1;(3)CM=2【解析】(1)如图1中,作AHBC于H首先证明四边形AHCD是正方形,求出BC、MC的长,利用平行线分线段成比例定理即可解决问题;(2)在RtAEH中,AE2=AH2+EH2=12+(1+y)2,由EAMEBA,可得,推出AE2=EMEB,由此构建函数关系式即可解决问题;(3

26、)如图2中,作AHBC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG想办法证明CM=CN,MN=DN+HM即可解决问题;【详解】解:(1)如图1中,作AHBC于HCDBC,ADBC,BCD=D=AHC=90,四边形AHCD是矩形,AD=DC=1,四边形AHCD是正方形,AH=CH=CD=1,B=45,AH=BH=1,BC=2,CM=BC=,CMAD,=,=,CF=1(2)如图1中,在RtAEH中,AE2=AH2+EH2=12+(1+y)2,AEM=AEB,EAM=B,EAMEBA,=,AE2=EMEB,1+(1+y)2=(x+y)(y+2),y=,22x0,0x1(3)如图2中,作

27、AHBC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG则ADNAHG,MANMAG,MN=MG=HM+GH=HM+DN,ABMEFN,EFN=B=45,CF=CE,四边形AHCD是正方形,CH=CD=AH=AD,EH=DF,AHE=D=90,AHEADF,AEH=AFD,AEH=DAN,AFD=HAM,HAM=DAN,ADNAHM,DN=HM,设DN=HM=x,则MN=2x,CN=CM=x,x+x=1,x=1,CM=2【点睛】本题考查了正方形的判定与性质,平行线分线段成比例定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质.熟练运用平行线分线段成比例定理是解(1)的关键

28、;证明EAMEBA是解(2)的关键;综合运用全等三角形的判定与性质是解(3)的关键.26、(1)y=x2+2x+1(2)当t=2时,点M的坐标为(1,6);当t2时,不存在,理由见解析;(1)y=x+1;P点到直线BC的距离的最大值为,此时点P的坐标为(,)【解析】【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t2时,不存

29、在,利用平行四边形对角线互相平分结合CEPE可得出此时不存在符合题意的点M;(1)过点P作PFy轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论【详解】(1)将A(1,0)、B(1,0)代入y=x2+bx+c,得,解得:,抛物线的表达式为y=x2+2x+1;(2)在图1中,连接PC,交抛物线对称轴l于点E,抛物线y=x2+b

30、x+c与x轴交于A(1,0),B(1,0)两点,抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,抛物线的表达式为y=x2+2x+1,点C的坐标为(0,1),点P的坐标为(2,1),点M的坐标为(1,6);当t2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,点C的横坐标为0,点E的横坐标为0,点P的横坐标t=120=2,又t2,不存在;(1)在图2中,过点P作PFy轴,交BC于点F设直线BC的解析式为y=mx+n(m0),将B(1,0)、C(0,1)代入y=mx+n,得,解得:,直线BC的解析式为y=x+1,点P的

31、坐标为(t,t2+2t+1),点F的坐标为(t,t+1),PF=t2+2t+1(t+1)=t2+1t,S=PFOB=t2+t=(t)2+;0,当t=时,S取最大值,最大值为点B的坐标为(1,0),点C的坐标为(0,1),线段BC=,P点到直线BC的距离的最大值为,此时点P的坐标为(,)【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t2两种情况考虑;(1)利用三角形的面积公式找出S关于t的函数表达式;利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值27、【解析】分析:根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题详解:原式= =当时,原式=点睛:本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁