《2022-2023学年北京市海淀区人大附中中考数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年北京市海淀区人大附中中考数学模拟试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,直线ykx+b与x轴交于点(4,0),则y0时,x的取值范围是()Ax4Bx0Cx4Dx02已知方程x2x2=0的两个实数根为x1、x2,则代数式x1+x2+x1x2的值为()A3B1C3D13如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x可以取的值
2、为()A2mB mC3mD6m4下列各数中比1小的数是()A2B1C0D15下列各式中计算正确的是()Ax3x3=2x6B(xy2)3=xy6C(a3)2=a5Dt10t9=t6如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A2B0C1D47如图,在平面直角坐标系中,正方形的顶点在轴上,且,则正方形的面积是( )ABCD8某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是() 动时间(小时)33.544.5人数1121A中位数是4,平均数是3.75B众数是4,平均数是3.75C中位数是4,平均数是3.8D众数是
3、2,平均数是3.89如图是小明在物理实验课上用量筒和水测量铁块A的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h与铁块被提起的时间t之间的函数关系的大致图象是()ABCD10如图,在RtABC中,ACB=90,A=30,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A B1 C D二、填空题(本大题共6个小题,每小题3分,共18分)11已知一次函数yax+b,且2a+b1,则该一次函数图象必经过点_12一机器人以0.2m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为_s13如图,已知是的高线,且
4、,则_.14已知梯形ABCD,ADBC,BC=2AD,如果,那么=_(用、 表示)15若关于的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为_16已知|x|=3,y2=16,xy0,则xy=_三、解答题(共8题,共72分)17(8分)如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”已知点C的坐标为(0,),点M是抛物线C2:(0)的顶点(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得PBC的面积最
5、大?若存在,求出PBC面积的最大值;若不存在,请说明理由;(3)当BDM为直角三角形时,求的值18(8分)如图,已知与抛物线C1过 A(-1,0)、B(3,0)、C(0,-3).(1)求抛物线C1 的解析式(2)设抛物线的对称轴与 x 轴交于点 P,D 为第四象限内的一点,若CPD 为等腰直角三角形,求出 D 点坐标19(8分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.求一次函数的表达式;若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.20(8分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶
6、和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖若某单位想要买5个水瓶和n(n10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买)21(8分)如图,ABC中AB=AC,请你利用尺规在BC边上求一点P,使ABCPAC不写画法,(保留作图痕迹).22(10分)如图,AB是O的直径,点C是O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分ACB,交AB点F,连接BE(1)求证:AC平分DAB;(2)求证:PCPF;(3)若tanABC,AB1
7、4,求线段PC的长23(12分)如图,AD是O的直径,AB为O的弦,OPAD,OP与AB的延长线交于点P,过B点的切线交OP于点C求证:CBP=ADB若OA=2,AB=1,求线段BP的长.24某中学九年级数学兴趣小组想测量建筑物AB的高度他们在C处仰望建筑物顶端A处,测得仰角为,再往建筑物的方向前进6米到达D处,测得仰角为,求建筑物的高度测角器的高度忽略不计,结果精确到米,参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】试题分析:充分利用图形,直接从图上得出x的取值范围由图可知,当y1时,x-4,故选C.考点:本题考查的是一次函数的图象点评:解答本题的关键是掌握在x轴下方的
8、部分y1,在x轴上方的部分y12、D【解析】分析:根据一元二次方程根与系数的关系求出x1x2和x1x2的值,然后代入x1x2x1x2计算即可.详解:由题意得,a=1,b=-1,c=-2,x1x2x1x2=1+(-2)=-1.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:, .3、C【解析】依据题意,三根木条的长度分别为x m,x m,(10-2x) m,在根据三角形的三边关系即可判断.【详解】解:由题意可知,三根木条的长度分别为x m,x m,(10-2x) m,三根木条要组成三角形,x-x10-2x0,
9、解得m5且m1,m的取值范围为m5且m1.故答案为:m5且m1.点睛:一元二次方程 方程有两个不相等的实数根时: 16、3【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想详解:因为|x|=1,所以x=1因为y2=16,所以y=2又因为xy0,所以x、y异号,当x=1时,y=-2,所以x-y=3;当x=-1时,y=2,所以x-y=-3故答案为:3.点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论三、解答题(共8题,共72分)17、(1)A(,0)、B(3,0)(2)存在SPBC最大值为 (3)或时,BDM为直角三角形【解析】(1)
10、在中令y=0,即可得到A、B两点的坐标(2)先用待定系数法得到抛物线C1的解析式,由SPBC = SPOC+ SBOPSBOC得到PBC面积的表达式,根据二次函数最值原理求出最大值(3)先表示出DM2,BD2,MB2,再分两种情况:BMD=90时;BDM=90时,讨论即可求得m的值【详解】解:(1)令y=0,则,m0,解得:,A(,0)、B(3,0)(2)存在理由如下:设抛物线C1的表达式为(),把C(0,)代入可得,1的表达式为:,即设P(p,), SPBC = SPOC+ SBOPSBOC=0,当时,SPBC最大值为(3)由C2可知: B(3,0),D(0,),M(1,),BD2=,BM2
11、=,DM2=MBD90, 讨论BMD=90和BDM=90两种情况:当BMD=90时,BM2+ DM2= BD2,即=,解得:,(舍去)当BDM=90时,BD2+ DM2= BM2,即=,解得:,(舍去) 综上所述,或时,BDM为直角三角形18、(1)y = x2-2x-3,(2)D1(4,-1),D2(3,- 4),D3 ( 2,- 2 )【解析】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入即可求出解析式;(2)根据题意作出图形,根据等腰直角三角形的性质即可写出坐标.【详解】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入得-3=a(-3)1解得a=1,
12、解析式为y= x2-2x-3,(2)如图所示,对称轴为x=1,过D1作D1Hx轴,CPD为等腰直角三角形,OPCHD1P,PH=OC=3,HD1=OP=1,D1(4,-1)过点D2Fy轴,同理OPCFCD2,FD2=3,CF=1,故D2(3,- 4)由图可知CD1与PD2交于D3,此时PD3CD3,且PD3=CD3,PC=,PD3=CD3=故D3 ( 2,- 2 ) D1(4,-1),D2(3,- 4),D3 ( 2,- 2 ) 使CPD 为等腰直角三角形.【点睛】此题主要考察二次函数与等腰直角三角形结合的题,解题的关键是熟知二次函数的图像与性质及等腰直角三角形的性质.19、(1);(2)1或
13、9.【解析】试题分析:(1)把A(2,b)的坐标分别代入一次函数和反比例函数表达式,求得k、b的值,即可得一次函数的解析式;(2)直线AB向下平移m(m0)个单位长度后,直线AB对应的函数表达式为yx5m,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令=0,即可求得m的值.试题解析: (1)根据题意,把A(2,b)的坐标分别代入一次函数和反比例函数表达式,得,解得,所以一次函数的表达式为yx5.(2)将直线AB向下平移m(m0)个单位长度后,直线AB对应的函数表达式为yx5m.由得, x2(5m)x80.(5m)2480,解得m1
14、或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解20、(1)一个水瓶40元,一个水杯是8元;(2)当10n25时,选择乙商场购买更合算当n25时,选择甲商场购买更合算【解析】(1)设一个水瓶x元,表示出一个水杯为(48x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48x)元,根据题意得:3x+4(48x)152,解得:x40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(405+8n)80%160+6.4n乙商场
15、所需费用为540+(n52)8120+8n则n10,且n为整数,160+6.4n(120+8n)401.6n讨论:当10n25时,401.6n0,160+0.64n120+8n,选择乙商场购买更合算当n25时,401.6n0,即 160+0.64n120+8n,选择甲商场购买更合算【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.21、见解析【解析】根据题意作CBA=CAP即可使得ABCPAC.【详解】如图,作CBA=CAP,P点为所求. 【点睛】此题主要考查相似三角形的尺规作图,解题的关键是作一个角与已知角相等.22、(1)(2)证明见解析;(3)1【
16、解析】(1)由PD切O于点C,AD与过点C的切线垂直,易证得OCAD,继而证得AC平分DAB;(2)由条件可得CAO=PCB,结合条件可得PCF=PFC,即可证得PC=PF;(3)易证PACPCB,由相似三角形的性质可得到 ,又因为tanABC= ,所以可得=,进而可得到=,设PC=4k,PB=3k,则在RtPOC中,利用勾股定理可得PC2+OC2=OP2,进而可建立关于k的方程,解方程求出k的值即可求出PC的长【详解】(1)证明:PD切O于点C,OCPD,又ADPD,OCAD,ACO=DACOC=OA,ACO=CAO,DAC=CAO,即AC平分DAB;(2)证明:ADPD,DAC+ACD=9
17、0又AB为O的直径,ACB=90PCB+ACD=90,DAC=PCB又DAC=CAO,CAO=PCBCE平分ACB,ACF=BCF,CAO+ACF=PCB+BCF,PFC=PCF,PC=PF;(3)解:PAC=PCB,P=P,PACPCB,又tanABC=,设PC=4k,PB=3k,则在RtPOC中,PO=3k+7,OC=7,PC2+OC2=OP2,(4k)2+72=(3k+7)2,k=6 (k=0不合题意,舍去)PC=4k=46=1【点睛】此题考查了和圆有关的综合性题目,用到的知识点有:切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质23、(1)证
18、明见解析;(2)BP=1.【解析】分析:(1)连接OB,如图,根据圆周角定理得到ABD=90,再根据切线的性质得到OBC=90,然后利用等量代换进行证明;(2)证明AOPABD,然后利用相似比求BP的长详(1)证明:连接OB,如图,AD是O的直径,ABD=90,A+ADB=90,BC为切线,OBBC,OBC=90,OBA+CBP=90,而OA=OB,A=OBA,CBP=ADB;(2)解:OPAD,POA=90,P+A=90,P=D,AOPABD,即,BP=1点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系也考查了圆周角定理和相似三角形的判定与性质24、14.2米;【解析】RtADB中用AB表示出BD、RtACB中用AB表示出BC,根据CD=BC-BD可得关于AB 的方程,解方程可得【详解】设米C=45在中,米,又米,在中TanADB= ,Tan60=解得答,建筑物的高度为米【点睛】本题考查解直角三角形的应用-仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件