《山东省德州地区2022-2023学年中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省德州地区2022-2023学年中考考前最后一卷数学试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为( )ABCD2如图,已知是中的边上的一点,的平分线交
2、边于,交于,那么下列结论中错误的是( )ABACBDABBFABECCBDFBECDBDFBAE3如图所示,有一条线段是()的中线,该线段是( ). A线段GHB线段ADC线段AED线段AF4下列运算正确的是()A3a22a2=1Ba2a3=a6C(ab)2=a2b2D(a+b)2=a2+2ab+b25如图,已知ABCD,1=115,2=65,则C等于()A40B45C50D606对于有理数x、y定义一种运算“”:,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知,则的值为( )A-1B-11C1D117下列计算正确的是Aa2a22a4 B(a2)3a6 C3a26a23a2 D(a
3、2)2a248对于点A(x1,y1),B(x2,y2),定义一种运算:例如,A(5,4),B(2,3),若互不重合的四点C,D,E,F,满足,则C,D,E,F四点【 】A在同一条直线上 B在同一条抛物线上C在同一反比例函数图象上 D是同一个正方形的四个顶点9下列图形中,线段MN的长度表示点M到直线l的距离的是( )ABCD10如下字体的四个汉字中,是轴对称图形的是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11在平面直角坐标系xOy中,将抛物线y=3(x+2)2-1平移后得到抛物线y=3x2+2 .请你写出一种平移方法. 答:_.12同学们设计了一个重复抛掷的实验:全班4
4、8人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.1组12组13组14组15组16组17组18组盖面朝上次数16533548363280194911221276盖面朝上频率0.5500.5580.5370.5270.5340.5270.5340.532根据实验,你认为这一型号的瓶盖盖面朝上的概率为_,理由是:_.13如果不等式组的解集是x2,那么m的取值范围是_14如果把抛物线y=2x21向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_15化简:=_16一个正方形AOBC各顶点的坐标分别为A(0,3),O(0,0),B(
5、3,0),C(3,3)若以原点为位似中心,将这个正方形的边长缩小为原来的,则新正方形的中心的坐标为_三、解答题(共8题,共72分)17(8分)如图,ABC是等腰三角形,ABAC,点D是AB上一点,过点D作DEBC交BC于点E,交CA延长线于点F证明:ADF是等腰三角形;若B60,BD4,AD2,求EC的长,18(8分)如图,ABAD,ACAE,BCDE,点E在BC上求证:ABCADE;(2)求证:EACDEB19(8分)在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0)AOB绕着O顺时针旋转,得AOB,点A、B旋转后的对应点为A、B,记旋转角为(I)如图1,若=30,求点B
6、的坐标;()如图2,若090,设直线AA和直线BB交于点P,求证:AABB;()若0360,求()中的点P纵坐标的最小值(直接写出结果即可)20(8分)如图,的直角顶点P在第四象限,顶点A、B分别落在反比例函数图象的两支上,且轴于点C,轴于点D,AB分别与x轴,y轴相交于点F和已知点B的坐标为填空:_;证明:;当四边形ABCD的面积和的面积相等时,求点P的坐标21(8分)如图1,在等边三角形中,为中线,点在线段上运动,将线段绕点顺时针旋转,使得点的对应点落在射线上,连接,设(且)(1)当时,在图1中依题意画出图形,并求(用含的式子表示);探究线段,之间的数量关系,并加以证明;(2)当时,直接写
7、出线段,之间的数量关系22(10分)顶点为D的抛物线yx2+bx+c交x轴于A、B(3,0),交y轴于点C,直线yx+m经过点C,交x轴于E(4,0)求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线yx+m于G,交抛物线于H,连接CH,将CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标23(12分)如图,抛物线yax2+bx+c(a0)的顶点为M,直线ym与抛物线交于点A,B,若
8、AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶由定义知,取AB中点N,连结MN,MN与AB的关系是_抛物线y对应的准蝶形必经过B(m,m),则m_,对应的碟宽AB是_抛物线yax24a(a0)对应的碟宽在x 轴上,且AB1求抛物线的解析式;在此抛物线的对称轴上是否有这样的点P(xp,yp),使得APB为锐角,若有,请求出yp的取值范围若没有,请说明理由24今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱
9、的单价是温馨提示牌单价的3倍(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可【详解】解:点M的坐标是(4,3),点M到x轴的距离是3,到y轴的距离是4,点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,r的取值范围是3r4,故选:D【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆
10、的位置关系的内容是解此题的关键2、C【解析】根据相似三角形的判定,采用排除法,逐项分析判断【详解】BAD=C,B=B,BACBDA故A正确BE平分ABC,ABE=CBE,BFABEC故B正确BFA=BEC,BFD=BEA,BDFBAE故D正确而不能证明BDFBEC,故C错误故选C【点睛】本题考查相似三角形的判定识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角3、B【解析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得【详解】根据三角形中线的定义知:线段AD是ABC的中线故选B【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此
11、边所对顶点的连线叫做三角形的中线4、D【解析】根据合并同类项法则,可知3a22a2= a2,故不正确;根据同底数幂相乘,可知a2a3=a5,故不正确;根据完全平方公式,可知(ab)2=a22ab+b2,故不正确;根据完全平方公式,可知(a+b)2=a2+2ab+b2,正确.故选D.【详解】请在此输入详解!5、C【解析】分析:根据两直线平行,同位角相等可得 再根据三角形内角与外角的性质可得C的度数详解:ABCD, 故选C.点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和. 6、B【解析】先由运算的定义,写出35=25,47=28,得到关于a、b、c的方程组,
12、用含c的代数式表示出a、b代入22求出值【详解】由规定的运算,35=3a+5b+c=25,4a+7b+c=28所以 解这个方程组,得所以22=a+b+c=-35-2c+24+c+c=-2故选B【点睛】本题考查了新运算、三元一次方程组的解法解决本题的关键是根据新运算的意义,正确的写出35=25,47=28,227、B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A. a2a2a4 ,故A选项错误;B. (a2)3a6 ,正确;C. 3a26a2-3a2 ,故C选项错误;D. (a2)2a24a+4,故D选项错误,故选B.【点睛】本题考查了同底
13、数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.8、A。【解析】对于点A(x1,y1),B(x2,y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么,。又,。令,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线上,互不重合的四点C,D,E,F在同一条直线上。故选A。9、A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离故选A10、A【解析】试题分析:根据轴对
14、称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形故选A考点:轴对称图形二、填空题(本大题共6个小题,每小题3分,共18分)11、答案不唯一【解析】分析:把y改写成顶点式,进而解答即可.详解:y先向右平移2个单位长度,再向上平移3个单位得到抛物线.故答案为y先向右平移2个单位长度,再向上平移3个单位得到抛物线.点睛:本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式为y=a(x-)+,然后把抛物线的平移问题转化为顶点的平移问题.12、0.532, 在用频率估计概率时,试验次数越多越接近,所以取18组的
15、频率值. 【解析】根据用频率估计概率解答即可.【详解】在用频率估计概率时,试验次数越多越接近,所以取18组的频率值,这一型号的瓶盖盖面朝上的概率为0.532,故答案为:0.532,在用频率估计概率时,试验次数越多越接近,所以取18组的频率值.【点睛】本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13、m1【解析】分析:先解第一个不等式,再根据不等式组的解集是x1,从而得出关于m的不等式,解不等式即可详解:解第一个不等式得,x1,不等式组的解集是x1,m1,故答案为m1点睛:本题是已知不等式组的解集,求不等式中字母取值范围的问题可以
16、先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了14、y=2(x+1)2+1【解析】原抛物线的顶点为(0,-1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(-1,1);可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+115、6【解析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:【详解】,故答案为-616、(,)或(,)【解析】分点A、B、C的对应点在第一象限和第三象限两种情况,根据位似变换和正方形的性质解答可
17、得【详解】如图,当点A、B、C的对应点在第一象限时,由位似比为1:2知点A(0,)、B(,0)、C(,),该正方形的中心点的P的坐标为(,);当点A、B、C的对应点在第三象限时,由位似比为1:2知点A(0,-)、B(-,0)、C(-,-),此时新正方形的中心点Q的坐标为(-,-),故答案为(,)或(-,-)【点睛】本题主要考查位似变换,解题的关键是熟练掌握位似变换的性质和正方形的性质三、解答题(共8题,共72分)17、(1)见解析;(2)EC1【解析】(1)由ABAC,可知BC,再由DEBC,可知F+C90,BDE+B90,然后余角的性质可推出FBDE,再根据对顶角相等进行等量代换即可推出FF
18、DA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论【详解】(1)ABAC,BC,FEBC,F+C90,BDE+B90,FBDE,而BDEFDA,FFDA,AFAD,ADF是等腰三角形;(2)DEBC,DEB90,B60,BD1,BEBD2,ABAC,ABC是等边三角形,BCABAD+BD6,ECBCBE1【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出FFDA,即可推出结论18、(1)详见解析;(2)详见解析【解析】(1)用“SSS”证明即可;(2)借助全等三角形的性质及角的和差求出DABEAC,再利用
19、三角形内角和定理求出DEBDAB,即可说明EACDEB【详解】解:(1)在ABC和ADE中 ABCADE(SSS);(2)由ABCADE,则DB,DAEBACDAEABEBACBAE,即DABEAC设AB和DE交于点O,DOABOE,DB,DEBDABEACDEB【点睛】本题主要考查了全等三角形的判定和性质,解题的关键是利用全等三角形的性质求出相等的角,体现了转化思想的运用19、(1)B的坐标为(,3);(1)见解析 ;(3)1【解析】(1)设AB与x轴交于点H,由OA=1,OB=1,AOB=90推出ABO=B=30,由BOB=30推出BOAB,由OB=OB=1推出OH=OB=,BH=3即可得
20、出;(1)证明BPA=90即可;(3)作AB的中点M(1,),连接MP,由APB=90,推出点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PMx轴时,点P纵坐标的最小值为1【详解】()如图1,设AB与x轴交于点H,OA=1,OB=1,AOB=90,ABO=B=30,BOB=30,BOAB,OB=OB=1,OH=OB=,BH=3,点B的坐标为(,3);()证明:BOB=AOA=,OB=OB,OA=OA,OBB=OAA=(180),BOA=90+,四边形OBPA的内角和为360,BPA=360(180)(90+)=90,即AABB;()点P纵坐标的最小值为如图,作AB
21、的中点M(1,),连接MP,APB=90,点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,)当PMx轴时,点P纵坐标的最小值为1【点睛】本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.20、(1)1;(2)证明见解析;(1)点坐标为【解析】由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;设A点坐标为,则D点坐标为,P点坐标为,C点坐标为,进而可得出PB,PC,PA,PD的长度,由四条线段的长度可得出,结合可得出,由相似三角形的性质可得出,再利用“同位角相等,两直线平行”可证出;由四边形ABCD的面积和的面积相等可得出,利用三角形的面积公式可得
22、出关于a的方程,解之取其负值,再将其代入P点的坐标中即可求出结论【详解】解:点在反比例函数的图象,故答案为:1证明:反比例函数解析式为,设A点坐标为轴于点C,轴于点D,点坐标为,P点坐标为,C点坐标为,又,解:四边形ABCD的面积和的面积相等,整理得:,解得:,舍去,点坐标为【点睛】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题关键是:根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;利用相似三角形的判定定理找出;由三角形的面积公式,找出关于a的方程21、(1);(2)【解析】(1)先根据等边三角形的性质的,进而得出,最后用三角形的内角
23、和定理即可得出结论;先判断出,得出,再判断出是底角为30度的等腰三角形,再构造出直角三角形即可得出结论;(2)同的方法即可得出结论【详解】(1)当时,画出的图形如图1所示,为等边三角形,为等边三角形的中线 是的垂直平分线,为线段上的点,线段为线段绕点顺时针旋转所得,;如图2,延长到点,使得,连接,作于点,点在上,点在的延长线上,又,于点,在等边三角形中,为中线,点在上,即为底角为的等腰三角形(2)如图3,当时,在上取一点使,为等边三角形,为等边三角形的中线,为线段上的点,是的垂直平分线,线段为线段绕点顺时针旋转所得,又,于点,在等边三角形中,为中线,点在上,【点睛】此题是几何变换综合题,主要考
24、查了等边三角形的性质,三角形的内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,锐角三角函数,作出辅助线构造出全等三角形是解本题的关键22、 (1)yx2+2x+3;(2)S(x)2+;当x时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CGH
25、G,列等式求解即可【详解】(1)将点E代入直线解析式中,04+m,解得m3,解析式为yx+3,C(0,3),B(3,0),则有,解得,抛物线的解析式为:yx2+2x+3;(2)yx2+2x+3(x1)2+4,D(1,4),设直线BD的解析式为ykx+b,代入点B、D,解得,直线BD的解析式为y2x+6,则点M的坐标为(x,2x+6),S(3+62x)x(x)2+,当x时,S有最大值,最大值为(3)存在,如图所示,设点P的坐标为(t,0),则点G(t,t+3),H(t,t2+2t+3),HG|t2+2t+3(t+3)|t2t|CGt,CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HGy轴,
26、HGCF,HGHF,CGCF,GHCCHF,FCHCHG,FCHFHC,GCHGHC,CGHG,|t2t|t,当t2tt时,解得t10(舍),t24,此时点P(4,0)当t2tt时,解得t10(舍),t2,此时点P(,0)综上,点P的坐标为(4,0)或(,0)【点睛】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CGHG为解题关键23、(1)MN与AB的关系是:MNAB,MNAB,(2)2,4;(2)yx22;在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【解析】(1)直接利用等腰直角三角形的性质分析得出
27、答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(2)根据题意得出抛物线必过(2,0),进而代入求出答案;根据yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,进而得出答案【详解】(1)MN与AB的关系是:MNAB,MNAB,如图1,AMB是等腰直角三角形,且N为AB的中点,MNAB,MNAB,故答案为MNAB,MNAB;(2)抛物线y对应的准蝶形必经过B(m,m),mm2,解得:m2或m0(不合题意舍去),当m2则,2x2,解得:x2,则AB2+24;故答案为2,4;(2)由已知,抛物线对称轴为:y轴,抛物线yax24a(a0)对应的碟宽
28、在x 轴上,且AB1抛物线必过(2,0),代入yax24a(a0),得,9a4a0,解得:a,抛物线的解析式是:yx22;由知,如图2,yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【点睛】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键24、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案见解析【解析】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48
29、个垃圾箱”,建立不等式即可得出结论【详解】(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+33x=550,x=50,经检验,符合题意,3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100y)个,根据题意得,意, y为正整数,y为50,51,52,共3中方案;有三种方案:温馨提示牌50个,垃圾箱50个,温馨提示牌51个,垃圾箱49个,温馨提示牌52个,垃圾箱48个,设总费用为w元W=50y+150(100y)=100y+15000,k=-100,w随y的增大而减小当y=52时,所需资金最少,最少是9800元【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键