《山东省莱山一中2023届高三第一次调研测试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省莱山一中2023届高三第一次调研测试数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知单位向量,的夹角为,若向量,且,则( )A2B2C4D62若双曲线的离心率为,则双曲线的焦距为( )ABC6D83已知双曲线的一条渐近线方程为,分别是双曲线C的左、右焦点,点P在双曲线C上
2、,且,则( )A9B5C2或9D1或54已知函数在上单调递增,则的取值范围( )ABCD5设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为( )ABCD6设为抛物线的焦点,为抛物线上三点,若,则( ).A9B6CD7设则以线段为直径的圆的方程是( )ABCD8已知数列,是首项为8,公比为得等比数列,则等于( )A64B32C2D49已知函数的定义域为,则函数的定义域为( )ABCD10已知函数,若存在实数,使成立,则正数的取值范围为()ABCD11执行下面的程序框图,则输出的值为 ( )ABCD12在中,角、所对的边分别为、,若,则( )ABCD二、填空题:本题共4小题
3、,每小题5分,共20分。13已知平面向量,满足|1,|2,的夹角等于,且()()0,则|的取值范围是_14给出以下式子:tan25+tan35tan25tan35;2(sin35cos25+cos35cos65);其中,结果为的式子的序号是_.15设f(x)etx(t0),过点P(t,0)且平行于y轴的直线与曲线C:yf(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1),则PRS的面积的最小值是_16若存在实数使得不等式在某区间上恒成立,则称与为该区间上的一对“分离函数”,下列各组函数中是对应区间上的“分离函数”的有_.(填上所有正确答案的序号),;,;,;,.三、解答题:共
4、70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在三棱柱ABCA1B1C1中,A1A平面ABC,ACB90,ACCBC1C1,M,N分别是AB,A1C的中点.(1)求证:直线MN平面ACB1;(2)求点C1到平面B1MC的距离.18(12分)已知等差数列和等比数列的各项均为整数,它们的前项和分别为,且,.(1)求数列,的通项公式;(2)求;(3)是否存在正整数,使得恰好是数列或中的项?若存在,求出所有满足条件的的值;若不存在,说明理由.19(12分)在平面直角坐标系xOy中,曲线的参数方程为(为参数)以平面直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标
5、方程为(1)求曲线的极坐标方程;(2)设和交点的交点为,求 的面积20(12分)的内角、所对的边长分别为、,已知.(1)求的值;(2)若,点是线段的中点,求的面积.21(12分)已知函数(1)已知直线:,:.若直线与关于对称,又函数在处的切线与垂直,求实数的值;(2)若函数,则当,时,求证:;.22(10分)已知数列,数列满足,n(1)若,求数列的前2n项和;(2)若数列为等差数列,且对任意n,恒成立当数列为等差数列时,求证:数列,的公差相等;数列能否为等比数列?若能,请写出所有满足条件的数列;若不能,请说明理由参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中
6、,只有一项是符合题目要求的。1、C【解析】根据列方程,由此求得的值,进而求得.【详解】由于,所以,即,解得.所以所以.故选:C【点睛】本小题主要考查向量垂直的表示,考查向量数量积的运算,考查向量模的求法,属于基础题.2、A【解析】依题意可得,再根据离心率求出,即可求出,从而得解;【详解】解:双曲线的离心率为,所以,双曲线的焦距为.故选:A【点睛】本题考查双曲线的简单几何性质,属于基础题.3、B【解析】根据渐近线方程求得,再利用双曲线定义即可求得.【详解】由于,所以,又且,故选:B.【点睛】本题考查由渐近线方程求双曲线方程,涉及双曲线的定义,属基础题.4、B【解析】由,可得,结合在上单调递增,易
7、得,即可求出的范围.【详解】由,可得,时,而,又在上单调递增,且,所以,则,即,故.故选:B.【点睛】本题考查了三角函数的单调性的应用,考查了学生的逻辑推理能力,属于基础题.5、C【解析】求得抛物线的焦点坐标,可得双曲线方程的渐近线方程为,由题意可得,又,即,解得,即可得到所求双曲线的方程.【详解】解:抛物线的焦点为可得双曲线即为的渐近线方程为由题意可得,即又,即解得,.即双曲线的方程为.故选:C【点睛】本题主要考查了求双曲线的方程,属于中档题.6、C【解析】设,由可得,利用定义将用表示即可.【详解】设,由及,得,故,所以.故选:C.【点睛】本题考查利用抛物线定义求焦半径的问题,考查学生等价转
8、化的能力,是一道容易题.7、A【解析】计算的中点坐标为,圆半径为,得到圆方程.【详解】的中点坐标为:,圆半径为,圆方程为.故选:.【点睛】本题考查了圆的标准方程,意在考查学生的计算能力.8、A【解析】根据题意依次计算得到答案.【详解】根据题意知:,故,.故选:.【点睛】本题考查了数列值的计算,意在考查学生的计算能力.9、A【解析】试题分析:由题意,得,解得,故选A考点:函数的定义域10、A【解析】根据实数满足的等量关系,代入后将方程变形,构造函数,并由导函数求得的最大值;由基本不等式可求得的最小值,结合存在性问题的求法,即可求得正数的取值范围.【详解】函数,由题意得,即,令,在上单调递增,在上
9、单调递减,而,当且仅当,即当时,等号成立,.故选:A.【点睛】本题考查了导数在求函数最值中的应用,由基本不等式求函数的最值,存在性成立问题的解法,属于中档题.11、D【解析】根据框图,模拟程序运行,即可求出答案.【详解】运行程序,结束循环,故输出,故选:D.【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.12、D【解析】利用余弦定理角化边整理可得结果.【详解】由余弦定理得:,整理可得:,.故选:.【点睛】本题考查余弦定理边角互化的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】计算得到|,|cos1,解得cos,根据三角函数的有界性计算范围得
10、到答案.【详解】由()()0 可得 ()|cos12cos|cos1,为与的夹角再由 21+4+212cos7 可得|,|cos1,解得cos0,1cos1,1,即|+10,解得 |,故答案为【点睛】本题考查了向量模的范围,意在考查学生的计算能力,利用三角函数的有界性是解题的关键.14、【解析】由已知分别结合和差角的正切及正弦余弦公式进行化简即可求解.【详解】tan60tan(25+35),tan25+tan35tan25tan35;tan25tan35,2(sin35cos25+cos35cos65)2(sin35cos25+cos35sin25),2sin60;tan(45+15)tan6
11、0;故答案为:【点睛】本题主要考查了两角和与差的三角公式在三角化简求值中的应用,属于中档试题.15、【解析】计算R(t,0),PRt(t),PRS的面积为S,导数S,由S0得t1,根据函数的单调性得到最值.【详解】PQy轴,P(t,0),Q(t,f(t)即Q(t,),又f(x)etx(t0)的导数f(x)tetx,过Q的切线斜率kt,设R(r,0),则k,rt,即R(t,0),PRt(t),又S(1,f(1)即S(1,et),PRS的面积为S,导数S,由S0得t1,当t1时,S0,当0t1时,S0,t1为极小值点,也为最小值点,PRS的面积的最小值为故答案为:【点睛】本题考查了利用导数求面积的
12、最值问题,意在考查学生的计算能力和应用能力.16、【解析】由题意可知,若要存在使得成立,我们可考虑两函数是否存在公切点,若两函数在公切点对应的位置一个单增,另一个单减,则很容易判断,对,都可以采用此法判断,对分析式子特点可知,进而判断【详解】时,令,则,单调递增, ,即.令,则,单调递减,即,因此,满足题意.时,易知,满足题意.注意到,因此如果存在直线,只有可能是(或)在处的切线,因此切线为,易知,因此不存在直线满足题意.时,注意到,因此如果存在直线,只有可能是(或)在处的切线,因此切线为.令,则,易知在上单调递增,在上单调递减,所以,即.令,则,易知在上单调递减,在上单调递增,所以,即.因此
13、,满足题意.故答案为:【点睛】本题考查新定义题型、利用导数研究函数图像,转化与化归思想,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析.(2)【解析】(1)连接AC1,BC1,结合中位线定理可证MNBC1,再结合线面垂直的判定定理和线面垂直的性质分别求证ACBC1,BC1B1C,即可求证直线MN平面ACB1;(2)作交于点,通过等体积法,设C1到平面B1CM的距离为h,则有,结合几何关系即可求解【详解】(1)证明:连接AC1,BC1,则NAC1且N为AC1的中点;M是AB的中点.所以:MNBC1;A1A平面ABC,AC平面ABC,A1AAC,在三
14、棱柱ABCA1B1C1中,AA1CC,ACCC1,ACB90,BCCC1C,BC平面BB1C1C,CC1平面BB1C1C,AC平面BB1C1C,BC平面BB1C1C,ACBC1;又MNBC1ACMN,CBC1C1,四边形BB1C1C正方形,BC1B1C,MNB1C,而ACB1CC,且AC平面ACB1,CB1平面ACB1,MN平面ACB1,(2)作交于点,设C1到平面B1CM的距离为h,因为MP,所以MP,因为CM,B1C;B1M,所以所以:CMB1M.因为,所以,解得所以点,到平面的距离为 【点睛】本题主要考查面面垂直的证明以及点到平面的距离,一般证明面面垂直都用线面垂直转化为面面垂直,而点到
15、面的距离常用体积转化来求,属于中档题18、(1);(2);(3)存在,1.【解析】(1)利用基本量法直接计算即可;(2)利用错位相减法计算;(3),令可得,讨论即可.【详解】(1)设数列的公差为,数列的公比为,因为,所以,即,解得,或(舍去).所以.(2),所以,所以.(3)由(1)可得,所以.因为是数列或中的一项,所以,所以,因为,所以,又,则或.当时,有,即,令.则.当时,;当时,即.由,知无整数解.当时,有,即存在使得是数列中的第2项,故存在正整数,使得是数列中的项.【点睛】本题考查数列的综合应用,涉及到等差、等比数列的通项,错位相减法求数列的前n项和,数列中的存在性问题,是一道较为综合
16、的题.19、(1);(2)【解析】(1)先将曲线的参数方程化为普通方程,再将普通方程化为极坐标方程即可.(2)将和的极坐标方程联立,求得两个曲线交点的极坐标,即可由极坐标的含义求得的面积.【详解】(1)曲线的参数方程为(为参数),消去参数的的直角坐标方程为所以的极坐标方程为 (2)解方程组,得到所以,则或()当()时,当()时,所以和的交点极坐标为: ,. 所以故的面积为【点睛】本题考查了参数方程与普通方程的转化,直角坐标方程与极坐标的转化,利用极坐标求三角形面积,属于中档题.20、(1)(2)【解析】(1)利用正弦定理的边化角公式,结合两角和的正弦公式,即可得出的值;(2)由题意得出,两边平
17、方,化简得出,根据三角形面积公式,即可得出结论.【详解】(1)由正弦定理得即即在中,所以 (2)因为点是线段的中点,所以两边平方得由得整理得,解得或(舍)所以的面积【点睛】本题主要考查了正弦定理的边化角公式,三角形的面积公式,属于中档题.21、(1)(2)证明见解析证明见解析【解析】(1)首先根据直线关于直线对称的直线的求法,求得的方程及其斜率.根据函数在处的切线与垂直列方程,解方程求得的值.(2)构造函数,利用的导函数证得当时,由此证得.由知成立,整理得成立.利用构造函数法证得,由此得到,即,化简后得到.【详解】(1)由解得必过与的交点.在上取点,易得点关于对称的点为,即为直线,所以的方程为
18、,即,其斜率为.又因为,所以,由题意,解得.(2)因为,所以.令,则,则,且,时,单调递减;时,单调递增.因为,所以,因为,所以存在,使时,单调递增;时,单调递减;时,单调递增.又,所以时,即,所以,即成立.由知成立,即有成立.令,即.所以时,单调递增;时,单调递减,所以,即,因为,所以,所以时,即时,.【点睛】本小题考查函数图象的对称性,利用导数求切线的斜率,利用导数证明不等式等基础知识;考查学生分析问题,解决问题的能力,推理与运算求解能力,转化与化归思想,数形结合思想和应用意识.22、(1)(2)见解析数列不能为等比数列,见解析【解析】(1)根据数列通项公式的特点,奇数项为等差数列,偶数项
19、为等比数列,选用分组求和的方法进行求解;(2)设数列的公差为,数列的公差为,当n为奇数时,得出;当n为偶数时,得出,从而可证数列,的公差相等;利用反证法,先假设可以为等比数列,结合题意得出矛盾,进而得出数列不能为等比数列【详解】(1)因为,所以,且,由题意可知,数列是以1为首项,2为公差的等差数列,数列是首项和公比均为4的等比数列,所以;(2)证明:设数列的公差为,数列的公差为,当n为奇数时,若,则当时,即,与题意不符,所以, 当n为偶数时,若,则当时,即,与题意不符,所以,综上,原命题得证;假设可以为等比数列,设公比为q,因为,所以,所以,因为当时,所以当n为偶数,且时,即当n为偶数,且时,不成立,与题意矛盾,所以数列不能为等比数列【点睛】本题主要考查数列的求和及数列的综合,数列求和时一般是结合通项公式的特征选取合适的求和方法,数列综合题要回归基本量,充分挖掘题目已知信息,细思细算,本题综合性较强,难度较大,侧重考查逻辑推理和数学运算的核心素养.