山东省潍坊市青州二中2023年高三第一次调研测试数学试卷含解析.doc

上传人:lil****205 文档编号:88000149 上传时间:2023-04-19 格式:DOC 页数:18 大小:1.76MB
返回 下载 相关 举报
山东省潍坊市青州二中2023年高三第一次调研测试数学试卷含解析.doc_第1页
第1页 / 共18页
山东省潍坊市青州二中2023年高三第一次调研测试数学试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《山东省潍坊市青州二中2023年高三第一次调研测试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省潍坊市青州二中2023年高三第一次调研测试数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下列选项中,说法正确的是( )A“”的否定是“”B若向量满足 ,则与的夹角为钝角C若,则D“”是“”的必要条件2如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的

2、体积为( )A2BC6D83已知函数,则,的大小关系为( )ABCD4已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为( )A2kB4kC4D25正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条( )A36B21C12D66 “角谷猜想”的内容是:对于任意一个大于1的整数,如果为偶数就除以2,如果是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入,则输出的( )A6B7C8D97网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为( )A1BC3D48已知函数满足当时,且当时,;当时,且).若函数的图象上关于原点对

3、称的点恰好有3对,则的取值范围是( )ABCD9设,是方程的两个不等实数根,记().下列两个命题( )数列的任意一项都是正整数;数列存在某一项是5的倍数.A正确,错误B错误,正确C都正确D都错误10将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是( )ABCD11已知是定义在上的奇函数,当时,则( )AB2C3D12设分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,若,则双曲线渐近线的斜率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知数列满足:,若对任意的正整数均有,则实数的最大值是_.14已知双曲线的一条渐近线

4、经过点,则该双曲线的离心率为_.15若函数,则使得不等式成立的的取值范围为_.16已知函数,则过原点且与曲线相切的直线方程为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C相交于两点A,B,求线段的长.18(12分)已知是等腰直角三角形,分别为的中点,沿将折起,得到如图所示的四棱锥()求证:平面平面()当三棱锥的体积取最大值时,求平面与

5、平面所成角的正弦值19(12分)已知抛物线:的焦点为,过上一点()作两条倾斜角互补的直线分别与交于,两点,(1)证明:直线的斜率是1;(2)若,成等比数列,求直线的方程.20(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)求曲线上的点到直线距离的最小值和最大值.21(12分)如图,在三棱锥中,侧面为等边三角形,侧棱.(1)求证:平面平面;(2)求三棱锥外接球的体积.22(10分)在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为极轴建立极坐

6、标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线与圆C的交点为O、P,与直线l的交点为Q,求线段的长. 参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】对于A根据命题的否定可得:“x0R,x02-x00”的否定是“xR,x2-x0”,即可判断出;对于B若向量满足,则与的夹角为钝角或平角;对于C当m=0时,满足am2bm2,但是ab不一定成立;对于D根据元素与集合的关系即可做出判断【详解】选项A根据命题的否定可得:“x0R,x02-x00”的否定是“xR,x2-x0”,因此A不正确;选项B若向量满足,则与

7、的夹角为钝角或平角,因此不正确.选项C当m=0时,满足am2bm2,但是ab不一定成立,因此不正确;选项D若“”,则且,所以一定可以推出“”,因此“”是“”的必要条件,故正确.故选:D.【点睛】本题考查命题的真假判断与应用,涉及知识点有含有量词的命题的否定、不等式性质、向量夹角与性质、集合性质等,属于简单题.2、A【解析】先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果.【详解】由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2,所以该四棱锥的体积为.故选A【点睛】本题主要考查几何的三视图,由几何体的三视图先还

8、原几何体,再由体积公式即可求解,属于常考题型.3、B【解析】可判断函数在上单调递增,且,所以.【详解】在上单调递增,且,所以.故选:B【点睛】本题主要考查了函数单调性的判定,指数函数与对数函数的性质,利用单调性比大小等知识,考查了学生的运算求解能力.4、D【解析】分析可得,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可.【详解】当时,等式不是双曲线的方程;当时,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离为2.故选:D【点睛】本题考查双曲线的方程与点到直线的距离.属于基础题.5、B【解析】先找到与平面平行的平面,利用面面平行的定义即可得到.【详解】考虑与平面平行的平面,平

9、面,平面,共有,故选:B.【点睛】本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单的组合问题,是一中档题.6、B【解析】模拟程序运行,观察变量值可得结论【详解】循环前,循环时:,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,满足条件,退出循环,输出故选:B【点睛】本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察变量值,从而得出结论7、A【解析】采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果.【详解】根据三视图可知:该几何体为三棱锥如图该几何体为三棱锥,长度如上图所以所以所以故选:A【点睛】本题考查根据三视图求直观图的体积

10、,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题.8、C【解析】先作出函数在上的部分图象,再作出关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即可.【详解】先作出函数在上的部分图象,再作出关于原点对称的图象,如图所示,当时,对称后的图象不可能与在的图象有3个交点;当时,要使函数关于原点对称后的图象与所作的图象有3个交点,则,解得.故选:C.【点睛】本题考查利用函数图象解决函数的交点个数问题,考查学生数形结合的思想、转化与化归的思想,是一道中档题.9、A【解析】利用韦达定理可得,结合可推出,再计算出,从而推出正确;

11、再利用递推公式依次计算数列中的各项,以此判断的正误.【详解】因为,是方程的两个不等实数根,所以,因为,所以,即当时,数列中的任一项都等于其前两项之和,又,所以,以此类推,即可知数列的任意一项都是正整数,故正确;若数列存在某一项是5的倍数,则此项个位数字应当为0或5,由,依次计算可知,数列中各项的个位数字以1,3,4,7,1,8,9,7,6,3,9,2为周期,故数列中不存在个位数字为0或5的项,故错误;故选:A.【点睛】本题主要考查数列递推公式的推导,考查数列性质的应用,考查学生的综合分析以及计算能力.10、D【解析】由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果

12、.【详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,函数.在上,故,即的值域是,故选:D.【点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题11、A【解析】由奇函数定义求出和【详解】因为是定义在上的奇函数,.又当时,.故选:A【点睛】本题考查函数的奇偶性,掌握奇函数的定义是解题关键12、C【解析】如图所示:切点为,连接,作轴于,计算,根据勾股定理计算得到答案.【详解】如图所示:切点为,连接,作轴于,故,在中,故,故,根据勾股定理:,解得.故选:.【点睛】本题考查了双曲线的渐近线斜率,意在考查学生的计算能力和综合应用

13、能力.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】根据递推公式可考虑分析,再累加求出关于关于参数的关系,根据表达式的取值分析出,再用数学归纳法证明满足条件即可.【详解】因为,累加可得.若,注意到当时,不满足对任意的正整数均有.所以.当时,证明:对任意的正整数都有.当时, 成立.假设当时结论成立,即,则,即结论对也成立.由数学归纳法可知,对任意的正整数都有.综上可知,所求实数的最大值是2.故答案为:2【点睛】本题主要考查了根据数列的递推公式求解参数最值的问题,需要根据递推公式累加求解,同时注意结合参数的范围问题进行分析.属于难题.14、【解析】根据双曲线方程,可得渐近线方程,

14、结合题意可表示,再由双曲线a,b,c关系表示,最后结合双曲线离心率公式计算得答案.【详解】因为双曲线为,所以该双曲线的渐近线方程为.又因为其一条渐近线经过点,即,则,由此可得.故答案为:.【点睛】本题考查由双曲线的渐近线构建方程表示系数关系进而求离心率,属于基础题.15、【解析】分,两种情况代入讨论即可求解.【详解】,当时,符合;当时,不满足.故答案为:【点睛】本题主要考查了分段函数的计算,考查了分类讨论的思想.16、【解析】设切点坐标为,利用导数求出曲线在切点的切线方程,将原点代入切线方程,求出的值,于此可得出所求的切线方程【详解】设切点坐标为,则曲线在点处的切线方程为,由于该直线过原点,则

15、,得,因此,则过原点且与曲线相切的直线方程为,故答案为【点睛】本题考查导数的几何意义,考查过点作函数图象的切线方程,求解思路是:(1)先设切点坐标,并利用导数求出切线方程;(2)将所过点的坐标代入切线方程,求出参数的值,可得出切点的坐标;(3)将参数的值代入切线方程,可得出切线的方程三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)l:,C:;(2)【解析】(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换;(2)由(1)可得曲线是圆,求出圆心坐标及半径,再求得圆心到直线的距离,即可求得的长.【详解】(1)由题意可得直线:,由,得,即,所以曲线C:.

16、(2)由(1)知,圆,半径.圆心到直线的距离为:.【点睛】本题考查直线的普通坐标方程、曲线的直角坐标方程的求法,考查弦长的求法、运算求解能力,是中档题18、 ()见解析. () .【解析】(I)证明平面得出平面,根据面面垂直的判定定理得到结论;(II)当平面时,棱锥体积最大,建立空间坐标系,计算两平面的法向量,计算法向量的夹角得出答案【详解】(I)证明: 分别为的中点 ,又平面平面,又平面平面平面(II),为定值当平面时,三棱锥的体积取最大值以为原点,以为坐标轴建立空间直角坐标系则,设平面的法向量为,则即,令可得平面 是平面的一个法向量平面与平面所成角的正弦值为【点睛】本题考查了面面垂直的判定

17、,二面角的计算,关键是能够根据体积的最值确定垂直关系,从而可以建立起空间直角坐标系,利用空间向量法求得二面角,属于中档题19、(1)见解析;(2)【解析】(1)设,由已知,得,代入中即可;(2)利用抛物线的定义将转化为,再利用韦达定理计算.【详解】(1)在抛物线上,设,由题可知,(2)由(1)问可设:,则, , ,即(*),将直线与抛物线联立,可得:,所以,代入(*)式,可得满足,:.【点睛】本题考查直线与抛物线的位置关系的应用,在处理直线与抛物线位置关系的问题时,通常要涉及韦达定理来求解,本题查学生的运算求解能力,是一道中档题.20、(1)(2)最大值;最小值.【解析】(1)结合极坐标和直角

18、坐标的互化公式可得;(2)利用参数方程,求解点到直线的距离公式,结合三角函数知识求解最值.【详解】解:(1)因为,代入,可得直线的直角坐标方程为.(2)曲线上的点到直线的距离,其中,.故曲线上的点到直线距离的最大值,曲线上的点到直线的距离的最小值.【点睛】本题主要考查极坐标和直角坐标的转化及最值问题,椭圆上的点到直线的距离的最值求解优先考虑参数方法,侧重考查数学运算的核心素养.21、(1)见解析;(2).【解析】(1)设中点为,连接、,利用等腰三角形三线合一的性质得出,利用勾股定理得出,由线面垂直的判定定理可证得平面,再利用面面垂直的判定定理可得出平面平面;(2)先确定三棱锥的外接球球心的位置

19、,利用三角形相似求出外接球的半径,再由球体的体积公式可求得结果.【详解】(1)设中点为,连接、, 因为,所以.又,所以,又由已知,则,所以,.又为正三角形,且,所以,因为,所以,平面,又平面,平面平面;(2)由于是底面直角三角形的斜边的中点,所以点是的外心,由(1)知平面,所以三棱锥的外接球的球心在上.在中,的垂直平分线与的交点即为球心,记的中点为点,则.由与相似可得,所以.所以三棱锥外接球的体积为.【点睛】本题考查面面垂直的证明,同时也考查了三棱锥外接球体积的计算,找出外接球球心的位置是解答的关键,考查推理能力与计算能力,属于中等题.22、(1);(2)2【解析】(1)首先利用对圆C的参数方程(为参数)进行消参数运算,化为普通方程,再根据普通方程化极坐标方程的公式得到圆C的极坐标方程(2)设,联立直线与圆的极坐标方程,解得;设,联立直线与直线的极坐标方程,解得,可得【详解】(1)圆C的普通方程为,又,所以圆C的极坐标方程为.(2)设,则由解得,得;设,则由解得,得;所以【点睛】本题考查圆的参数方程与普通方程的互化,考查圆的极坐标方程,考查极坐标方程的求解运算,考查了学生的计算能力以及转化能力,属于基础题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁