《山东省禹城市2023届中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省禹城市2023届中考押题数学预测卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,点P是AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PMN周长的最小值是5cm,则AOB的度数是( )ABCD2在一次数学答题比赛中,五位同学
2、答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A众数是5B中位数是5C平均数是6D方差是3.63如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=()AB1CD4如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角当点P第2018次碰到矩形的边时,点P的坐标为( )A(1,4)B(7,4)C(6,4)D(8,3)5反比例函数是y=的图象在()A第一、二象限B第一、三象限C第二、三象限D第二、四象限6一个不透明的袋中有四张
3、完全相同的卡片,把它们分别标上数字1、2、3、1随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()ABCD7下列安全标志图中,是中心对称图形的是( )ABCD8如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是( )ABCD9若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为A1B3C0D1或310如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A8BC4D二、填空题(本大题共6个小题,每小题3分,共18分)11不等式组的非负整数解
4、的个数是_12抛物线y=x2+2x+m1与x轴有交点,则m的取值范围是_13已知关于x方程x23x+a=0有一个根为1,则方程的另一个根为_14如图,ABC内接于O,AB为O的直径,CAB=60,弦AD平分CAB,若AD=6,则AC=_15为了求1+2+22+23+22016+22017的值,可令S1+2+22+23+22016+22017,则2S2+22+23+24+22017+22018,因此2SS220181,所以1+22+23+22017220181请你仿照以上方法计算1+5+52+53+52017的值是_16如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折
5、叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .三、解答题(共8题,共72分)17(8分)如图,已知在梯形ABCD中,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.(1)求证:;(2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果与相似,求BP的长.18(8分)甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲8 80.4乙 9 3.2(2)教练根据这5次成绩,选择甲参
6、加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差 (填“变大”、“变小”或“不变”)19(8分)经过江汉平原的沪蓉(上海成都)高速铁路即将动工工程需要测量汉江某一段的宽度如图,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得ACB=68(1)求所测之处江的宽度(sin680.93,cos680.37,tan682.1);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图中画出图形(不用考虑计算问题,叙述清楚即可)20(8分)观察下列等式:15+4=32;26+4=42;
7、37+4=52;(1)按照上面的规律,写出第个等式:_;(2)模仿上面的方法,写出下面等式的左边:_=502;(3)按照上面的规律,写出第n个等式,并证明其成立21(8分)如图,ABAD,ACAE,BCDE,点E在BC上求证:ABCADE;(2)求证:EACDEB22(10分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人孔明同学调查的这组学生共有_人;这组数据的众数是_元,中位数是_元;若该校有2000名学生,都进
8、行了捐款,估计全校学生共捐款多少元?23(12分)如图,AB是O的直径,点E是上的一点,DBC=BED求证:BC是O的切线;已知AD=3,CD=2,求BC的长24如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同)把这四张卡片背面向上洗匀后,进行下列操作:(1)若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;(2)若任意抽出一张不放回,然后再从余下的抽出一张请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率参考答案一、选择题(共10小题,每小题3分
9、,共30分)1、B【解析】试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时PMN的周长最小由线段垂直平分线性质可得出PMN的周长就是P3P3的长,OP=3,OP3=OP3=OP=3又P3P3=3,,OP3=OP3=P3P3,OP3P3是等边三角形, P3OP3=60,即3(AOP+BOP)=60,AOP+BOP=30,即AOB=30,故选B考点:3线段垂直平分线性质;3轴对称作图2、D【解析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5
10、、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)5=6,此选项正确;D、方差为(76)2+(56)22+(36)2+(106)2=5.6,此选项错误;故选:D【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大3、D【解析】由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到BAC=30,求得ACBE,推出C在对角线AH上,得到A,C,H共线,于是得到结论【详解】如图,连接AC交BE于点O,将矩形ABCD绕点B按顺时针方
11、向旋转后得到矩形EBGF,AB=BE,四边形AEHB为菱形,AE=AB,AB=AE=BE,ABE是等边三角形,AB=3,AD=,tanCAB=,BAC=30,ACBE,C在对角线AH上,A,C,H共线,AO=OH=AB=,OC=BC=,COB=OBG=G=90,四边形OBGM是矩形,OM=BG=BC=,HM=OHOM=,故选D【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.4、B【解析】如图,经过6次反弹后动点回到出发点(0,3),20186=3362,当点P第2018次碰到矩形的边时为第336个循环组的第2次反
12、弹,点P的坐标为(7,4)故选C5、B【解析】解:反比例函数是y=中,k=20,此函数图象的两个分支分别位于一、三象限故选B6、C【解析】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=,故选C【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比 7、B【解析】试题分析:A不是中心对称图形,故此选项不合题意;B是中心对称图形,故此选项符合题意;C不是中心对称图
13、形,故此选项不符合题意;D不是中心对称图形,故此选项不合题意;故选B考点:中心对称图形8、A【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图详解:该几何体的左视图是:故选A点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力9、B【解析】直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值【详解】x=1是方程(m1)x2+x+m25m+3=0的一个根,(m1)+1+m25m+3=0,m24m+3=0,m=1或m=3,但当m=1时方程的二次项系数为0,m=3.故答案选B.【点睛】本题考查了一元二次方程的解,解题的
14、关键是熟练的掌握一元二次方程的运算.10、A【解析】【分析】设,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,即可求出【详解】轴,B两点纵坐标相同,设,则,故选A【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集【详解】解:解得:x,解得:x1,不等式组的解集为x1,其非负整数解为0、1、2、3、4共1个,故答案为1【点睛】本题考查了不等式组的解法,先
15、分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解12、m1【解析】由抛物线与x轴有交点可得出方程x1+1x+m-1=0有解,利用根的判别式0,即可得出关于m的一元一次不等式,解之即可得出结论【详解】关于x的一元二次方程x1+1x+m1=0有解,=114(m1)=84m0,解得:m1.故答案为:m1.【点睛】本题考查的知识点是抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点.13、1【解析】分析:设方程的另一个根为m,根据两根之和等于-,即可得出关于m的一元一次方程,解之即可得出结论详解:设
16、方程的另一个根为m,根据题意得:1+m=3,解得:m=1故答案为1点睛:本题考查了根与系数的关系,牢记两根之和等于-是解题的关键14、2【解析】首先连接BD,由AB是O的直径,可得C=D=90,然后由BAC=60,弦AD平分BAC,求得BAD的度数,又由AD=6,求得AB的长,继而求得答案【详解】解:连接BD,AB是O的直径,C=D=90,BAC=60,弦AD平分BAC,BAD=BAC=30,在RtABD中,AB=4,在RtABC中,AC=ABcos60=4=2故答案为215、【解析】根据上面的方法,可以令S=1+5+52+53+52017,则5S=5+52+53+52012+52018,再相
17、减算出S的值即可.【详解】解:令S1+5+52+53+52017,则5S5+52+53+52012+52018,5SS1+52018,4S520181,则S,故答案为:【点睛】此题参照例子,采用类比的方法就可以解决,注意这里由于都是5的次方,所以要用5S来达到抵消的目的.16、(10,3)【解析】根据折叠的性质得到AF=AD,所以在直角AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标【详解】四边形AOCD为矩形,D的坐标为(10,8),AD=BC=10,DC=AB=8,矩形沿AE折叠,使D落在BC上的点F处,
18、AD=AF=10,DE=EF,在RtAOF中,OF= =6,FC=106=4,设EC=x,则DE=EF=8x,在RtCEF中,EF2=EC2+FC2,即(8x)2=x2+42,解得x=3,即EC的长为3.点E的坐标为(10,3).三、解答题(共8题,共72分)17、(1)见解析;(2);(3)当或8时,与相似.【解析】(1)想办法证明即可解决问题;(2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;(3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;【详解】(1)证明:四边形ABCD是等腰梯形,.(2)解:作于M,于N.则四边形是矩形.在
19、中,.(3)解:,相似时,与相似,当时,此时,当时,此时,综上所述,当PB=5或8时,与相似.【点睛】本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.18、(1)填表见解析;(2)理由见解析;(3)变小【解析】(1)根据众数、平均数和中位数的定义求解:(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.(3)根据方差公式求解:
20、如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小【详解】试题分析:试题解析:解:(1)甲的众数为8,乙的平均数=(5+9+7+10+9)=8,乙的中位数为9.故填表如下:平均数众数中位数方差甲8 8 80.4乙 8 9 9 3.2(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,平均数不变,根据方差公式可得乙的射击成绩的方差变小考点:1.方差;2.算术平均数;3.中位数;4.众数19、 (1)21米(2)见解析【解析】试题分析:(1)根据题意易发现,直角三角形ABC中,已知AC的长度,又知道了ACB的度数,那么AB的长就不难
21、求出了(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的解:(1)在RtBAC中,ACB=68,AB=ACtan681002.1=21(米)答:所测之处江的宽度约为21米(2)延长BA至C,测得AC做记录;从C沿平行于河岸的方向走到D,测得CD,做记录;测AE,做记录根据BAEBCD,得到比例线段,从而解答20、610+4=82 4852+4 【解析】(1)根据题目中的式子的变化规律可以解答本题;(2)根据题目中的式子的变化规律可以解答本题;(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明【详解】解:(1)由题目中的式子可得,第个等式:61
22、0+4=82,故答案为610+4=82;(2)由题意可得,4852+4=502,故答案为4852+4;(3)第n个等式是:n(n+4)+4=(n+2)2,证明:n(n+4)+4=n2+4n+4=(n+2)2,n(n+4)+4=(n+2)2成立【点睛】本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法21、(1)详见解析;(2)详见解析【解析】(1)用“SSS”证明即可;(2)借助全等三角形的性质及角的和差求出DABEAC,再利用三角形内角和定理求出DEBDAB,即可说明EACDEB【详解】解:(1)在ABC和ADE中 ABCADE(SSS);(2)由ABCA
23、DE,则DB,DAEBACDAEABEBACBAE,即DABEAC设AB和DE交于点O,DOABOE,DB,DEBDABEACDEB【点睛】本题主要考查了全等三角形的判定和性质,解题的关键是利用全等三角形的性质求出相等的角,体现了转化思想的运用22、(1)60;(2)20,20;(3)38000【解析】(1)利用从左到右各长方形高度之比为3:4:5:10:8,可设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则根据题意得8x=1,解得x=2,然后计算3x+4x+5x+10x+8x即可;(2)先确定各组的人数,然后根据中位数和众数的定义求解;(3)先计算出样本
24、的加权平均数,然后利用样本平均数估计总体,用2000乘以样本平均数即可【详解】(1)设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则8x=1,解得:x=2,3x+4x+5x+10x+8x=30x=302=60(人);(2)捐5元、10元、15元、20元和30元的人数分别为6,8,10,20,120出现次数最多,众数为20元;共有60个数据,第30个和第31个数据落在第四组内,中位数为20元;(3)2000=38000(元),估算全校学生共捐款38000元【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后
25、按顺序把这些直条排列起来也考查了样本估计总体、中位数与众数23、 (1)证明见解析(2)BC=【解析】(1)AB是O的直径,得ADB=90,从而得出BAD=DBC,即ABC=90,即可证明BC是O的切线;(2)可证明ABCBDC,则,即可得出BC=【详解】(1)AB是O的切直径,ADB=90,又BAD=BED,BED=DBC,BAD=DBC,BAD+ABD=DBC+ABD=90,ABC=90,BC是O的切线;(2)解:BAD=DBC,C=C,ABCBDC,即BC2=ACCD=(AD+CD)CD=10,BC=考点:1.切线的判定;2.相似三角形的判定和性质.24、(1);(2).【解析】(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;(2)画出树状图,然后根据概率公式列式计算即可得解【详解】(1)正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,抽到的卡片既是中心对称图形又是轴对称图形的概率是;(2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,所以,P(抽出的两张卡片的图形是中心对称图形)【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比