《广东省揭阳市揭西县重点中学2023届中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省揭阳市揭西县重点中学2023届中考数学模拟精编试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知二次函数yax2+bx+c(a1)的图象如图所示,给出以下结论:a+b+c1;ab+c1;b+2a1;abc1其中所有正确结论的序号是( )ABCD2方程2x2x3=0的两个根为()Ax1=,x2=1Bx1=,x2=1Cx1=,x2=3Dx1=,x2=33已知二次函数ya(x2)2+c,当xx1时,函数值为y1;当xx2时,函数值为y2,若|x12|x22|,则下列表达式正确的是()Ay1+y20By1y20Ca(y1y2)0Da(y1+y2)04这个数是( )A整数B分数C有理数D无理数5下列运算正确的是()A(2a)3=6
3、a3B3a24a3=12a5C3a(2a)=6a3a2D2a3a2=2a6估计介于( )A0与1之间B1与2之间C2与3之间D3与4之间7如图,在ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为()A2B3C4D68甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A B C D9有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的主视图是ABCD10下列计算正确的是()Ax4x4=x16 B(a+b)2=a2+b2C=4 D(a6)2(a4)3=1二、填空题(共7小题,每小题3分,满分21分)
4、11不等式组的解集为_.12函数y= 中,自变量x的取值范围为_13受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为_14观察以下一列数:3,则第20个数是_15如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是_ 16如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:_17我们知道方程组的解是,现给出另一个方程组,它的解是_三、解答题(共7小题,满分69分)18(10分)综合与探究:如图,已知在ABC 中,AB=AC,BAC=90,点 A 在 x 轴上,点 B 在
5、 y 轴上,点在二次函数的图像上(1)求二次函数的表达式;(2)求点 A,B 的坐标;(3)把ABC 沿 x 轴正方向平移, 当点 B 落在抛物线上时, 求ABC 扫过区域的面积19(5分)ABC内接于O,AC为O的直径,A60,点D在AC上,连接BD作等边三角形BDE,连接OE如图1,求证:OEAD;如图2,连接CE,求证:OCEABD;如图3,在(2)的条件下,延长EO交O于点G,在OG上取点F,使OF2OE,延长BD到点M使BDDM,连接MF,若tanBMF,OD3,求线段CE的长20(8分)如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF求证:FCA
6、B21(10分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为 人,参加球类活动的人数的百分比为 (2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为 .(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.22(10分)填空并解答:某单位开设了一个窗口办理业
7、务,并按顾客“先到达,先办理”的方式服务,该窗口每2分钟服务一位顾客已知早上8:00上班窗口开始工作时,已经有6位顾客在等待,在窗口工作1分钟后,又有一位“新顾客”到达,且以后每5分钟就有一位“新顾客”到达该单位上午8:00上班,中午11:30下班(1)问哪一位“新顾客”是第一个不需要排队的?分析:可设原有的6为顾客分别为a1、a2、a3、a4、a5、a6,“新顾客”为c1、c2、c3、c4窗口开始工作记为0时刻a1a2a3a4a5a6c1c2c3c4到达窗口时刻000000161116服务开始时刻024681012141618每人服务时长2222222222服务结束时刻24681012141
8、61820根据上述表格,则第 位,“新顾客”是第一个不需要排队的(2)若其他条件不变,若窗口每a分钟办理一个客户(a为正整数),则当a最小取什么值时,窗口排队现象不可能消失分析:第n个“新顾客”到达窗口时刻为 ,第(n1)个“新顾客”服务结束的时刻为 23(12分)如图,已知二次函数的图象与轴交于,两点在左侧),与轴交于点,顶点为(1)当时,求四边形的面积;(2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点,使,求点的坐标;(3)如图2,将(1)中抛物线沿直线向斜上方向平移个单位时,点为线段上一动点,轴交新抛物线于点,延长至,且,若的外角平分线交点在新抛物线上,求点坐标24(14分)
9、如图,在矩形ABCD中,AB3,AD4,P沿射线BD运动,连接AP,将线段AP绕点P顺时针旋转90得线段PQ(1)当点Q落到AD上时,PAB_,PA_,长为_;(2)当APBD时,记此时点P为P0,点Q为Q0,移动点P的位置,求QQ0D的大小;(3)在点P运动中,当以点Q为圆心,BP为半径的圆与直线BD相切时,求BP的长度;(4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与
10、x轴交点情况进行推理,进而对所得结论进行判断解:当x=1时,y=a+b+c=1,故本选项错误;当x=1时,图象与x轴交点负半轴明显大于1,y=ab+c1,故本选项正确;由抛物线的开口向下知a1,对称轴为1x=1,2a+b1,故本选项正确;对称轴为x=1,a、b异号,即b1,abc1,故本选项错误;正确结论的序号为故选B点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a1;否则a1;(2)b由对称轴和a的符号确定:由对称轴公式x=b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c1;否则c1;(4)当x=1时,可以确定y=a+
11、b+C的值;当x=1时,可以确定y=ab+c的值2、A【解析】利用因式分解法解方程即可【详解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1故选A【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)3、C【解析】分a1和a1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解【详解】解:a1时,二次函
12、数图象开口向上,|x12|x22|,y1y2,无法确定y1+y2的正负情况,a(y1y2)1,a1时,二次函数图象开口向下,|x12|x22|,y1y2,无法确定y1+y2的正负情况,a(y1y2)1,综上所述,表达式正确的是a(y1y2)1故选:C【点睛】本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论4、D【解析】由于圆周率是一个无限不循环的小数,由此即可求解【详解】解:实数是一个无限不循环的小数所以是无理数故选D【点睛】本题主要考查无理数的概念,是常见的一种无理数的形式,比较简单5、B【解析】先根据同底数幂的乘法法则进行运算即可。【详解】A.
13、;故本选项错误;B. 3a24a3=12a5; 故本选项正确;C.;故本选项错误;D. 不是同类项不能合并; 故本选项错误;故选B.【点睛】先根据同底数幂的乘法法则, 幂的乘方, 积的乘方, 合并同类项分别求出每个式子的值, 再判断即可.6、C【解析】解:,即估计在23之间故选C【点睛】本题考查估计无理数的大小7、B【解析】根据三角形的中位线等于第三边的一半进行计算即可【详解】D、E分别是ABC边AB、AC的中点,DE是ABC的中位线,BC=6,DE=BC=1故选B【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形
14、的计算及证明中有着广泛的应用8、A【解析】分析:甲队每天修路xm,则乙队每天修(x10)m,因为甲、乙两队所用的天数相同,所以,。故选A。9、C【解析】根据主视图的定义判断即可【详解】解:从正面看一个正方形被分成三部分,两条分别是虚线,故正确故选:【点睛】此题考查的是主视图的判断,掌握主视图的定义是解决此题的关键10、D【解析】试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加) ;(a+b)2=a2+b2+2ab(完全平方公式) ;(表示16的算术平方根取正号);.(先算幂的乘方,底数不变,指数相乘;再算同底数幂相除,底数不变,指数相减.).考点:1、幂的运算;2、完全平方公式;3、
15、算术平方根.二、填空题(共7小题,每小题3分,满分21分)11、x1【解析】分别求出两个不等式的解集,再求其公共解集【详解】,解不等式,得:x1,解不等式,得:x-3,所以不等式组的解集为:x1,故答案为:x1【点睛】本题考查一元一次不等式组的解法,属于基础题求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了12、x1【解析】该函数是分式,分式有意义的条件是分母不等于0,故分母x-10,解得x的范围【详解】根据题意得:x10,解得:x1.故答案为x1.【点睛】本题考查了函数自变量的取值范围,解题的关键是熟练的掌握分式的意义.13、5.51【解析】分析:科学
16、记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数详解:5.5亿=5 5000 0000=5.51,故答案为5.51点睛:此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值14、 【解析】观察已知数列得到一般性规律,写出第20个数即可【详解】解:观察数列得:第n个数为,则第20个数是故答案为【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键15
17、、10.5【解析】先证AEBABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BEAC,DCACBE/DC,AEBADC,即:,CD10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.16、这一天的最高气温约是26【解析】根据我区某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案【详解】解:根据图象可得这一天的最高气温约是26,故答案为:这一天的最高气温约是26【点睛】本题考查的是函数图象问题,统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键17、【解析】观察两个方程组的形式与联系,可
18、得第二个方程组中,解之即可.【详解】解:由题意得,解得.故答案为:.【点睛】本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.三、解答题(共7小题,满分69分)18、(1);(2);(3)【解析】(1)将点代入二次函数解析式即可;(2)过点作轴,证明即可得到即可得出点 A,B 的坐标;(3)设点的坐标为,解方程得出四边形为平行四边形,求出AC,AB的值,通过扫过区域的面积=代入计算即可【详解】解:(1)点在二次函数的图象上,解方程,得二次函数的表达式为 (2)如图1,过点作轴,垂足为,在和中,点的坐标为 ,(3)如图2,把沿轴正方向平移, 当点落在抛物线上点处时,设点的坐标为解方
19、程得:(舍去)或由平移的性质知,且,四边形为平行四边形,扫过区域的面积= 【点睛】本题考查了二次函数与几何综合问题,涉及全等三角形的判定与性质,平行四边形的性质与判定,勾股定理解直角三角形,解题的关键是灵活运用二次函数的性质与几何的性质19、 (1)证明见解析;(2)证明见解析;(3)CE【解析】(1)连接OB,证明ABDOBE,即可证出OEAD(2)连接OB,证明OCEOBE,则OCEOBE,由(1)的全等可知ABDOBE,则OCEABD(3)过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,则ADBMQD,四边形MQOG为平行四边形,DMFEDN,再结合特殊角度和已知的线段长度
20、求出CE的长度即可【详解】解:(1)如图1所示,连接OB,A60,OAOB,AOB为等边三角形,OAOBAB,AABOAOB60,DBE为等边三角形,DBDEBE,DBEBDEDEB60,ABDOBE,ADBOBE(SAS),OEAD;(2)如图2所示,由(1)可知ADBOBE,BOEA60,ABDOBE,BOA60,EOCBOE =60,又OB=OC,OE=OE,BOECOE(SAS),OCEOBE,OCEABD;(3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,BDDM,ADBQDM,QMDABD,ADBMQD(ASA),ABMQ,A60,ABC90,ACB3
21、0,ABAOCOOG,MQOG,ABGO,MQGO,四边形MQOG为平行四边形,设AD为x,则OEx,OF2x,OD3,OAOG3+x,GF3x,DQADx,OQMG3x,MGGF,DOG60,MGF120,GMFGFM30,QMDABDODE,ODN30,DMFEDN,OD3,ON,DN,tanBMF,tanNDE, ,解得x1,NE,DE,CE故答案为(1)证明见解析;(2)证明见解析;(3)CE【点睛】本题考查圆的相关性质以及与圆有关的计算,全等三角形的性质和判定,第三问构造全等三角形找到与BMF相等的角为解题的关键20、答案见解析【解析】利用已知条件容易证明ADECFE,得出角相等,然
22、后利用平行线的判定可以证明FCAB【详解】解:E是AC的中点,AE=CE在ADE与CFE中,AE=EC,AED=CEF,DE=EF,ADECFE(SAS),EAD=ECF,FCAB【点睛】本题主要考查了全等三角形的性质与判定,平行线的判定定理通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用21、(1)7、30%;(2)补图见解析;(3)105人;(3)【解析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解试题解析
23、:解:(1)本次调查的总人数为1025%=40(人),参加音乐类活动的学生人数为4017.5%=7人,参加球类活动的人数的百分比为100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P(选中一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小22、(1)5;(2)5n4,na+6a【解析】(1)第5
24、位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,则第n个“新顾客”到达窗口时刻为5n4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,第n1个“新顾客”服务开始的时间为(6+n1)a=(5+n)a,第n1个“新顾客”服务结束的时间为(5+n)a+a=na+6a【详解】(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;故答案为:5;(2)由表格中信息可得,“新顾客”到达时间为1,6,1
25、1,16,第n个“新顾客”到达窗口时刻为5n4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,第n个“新顾客”服务开始的时间为(6+n)a,第n1个“新顾客”服务开始的时间为(6+n1)a=(5+n)a,每a分钟办理一个客户,第n1个“新顾客”服务结束的时间为(5+n)a+a=na+6a,故答案为:5n4,na+6a【点睛】本题考查了列代数式,用代数式表示数的规律,解题关键是要读懂题目的意思,根据题目给出的条件,寻找规律,列出代数式23、(1)4;(2),;(3)【解析】(1)过点D作DEx轴于点E,求出二次函数的顶点D的坐标,然后求出A、B、C的坐标,然后根据即可得出结论;(2)设
26、点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,证出,列表比例式,并找出关于t的方程即可得出结论;(3)判断点D在直线上,根据勾股定理求出DH,即可求出平移后的二次函数解析式,设点,过点作于,于,轴于,根据勾股定理求出AG,联立方程即可求出m、n,从而求出结论【详解】解:(1)过点D作DEx轴于点E当时,得到,顶点,DE=1由,得,;令,得;,OC=3(2)如图1,设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,由翻折得:,;,轴,由勾股定理得:,解得:(不符合题意,舍去),;,(3)原抛物线的顶点在直线上,直线交轴于点
27、,如图2,过点作轴于,;由题意,平移后的新抛物线顶点为,解析式为,设点,则,过点作于,于,轴于,、分别平分,点在抛物线上,根据题意得:解得:【点睛】此题考查的是二次函数的综合大题,难度较大,掌握二次函数平移规律、二次函数的图象及性质、相似三角形的判定及性质和勾股定理是解决此题的关键24、 (1)45,;(2)满足条件的QQ0D为45或135;(3)BP的长为或;(4)CQ7.【解析】(1)由已知,可知APQ为等腰直角三角形,可得PAB,再利用三角形相似可得PA,及弧AQ的长度;(2)分点Q在BD上方和下方的情况讨论求解即可(3)分别讨论点Q在BD上方和下方的情况,利用切线性质,在由(2)用BP
28、0表示BP,由射影定理计算即可;(4)由(2)可知,点Q在过点Qo,且与BD夹角为45的线段EF上运动,有图形可知,当点Q运动到点E时,CQ最长为7,再由垂线段最短,应用面积法求CQ最小值【详解】解:(1)如图,过点P做PEAD于点E由已知,APPQ,APQ90APQ为等腰直角三角形PAQPAB45设PEx,则AEx,DE4xPEABDEPDAB=解得xPAPE弧AQ的长为2故答案为45,(2)如图,过点Q做QFBD于点F由APQ90,APP0+QPD90P0AP+APP090QPDP0APAPPQAPP0PQFAP0PF,P0PQFAP0P0Q0Q0DP0PQFFQ0QQ0D45当点Q在BD
29、的右下方时,同理可得PQ0Q45,此时QQ0D135,综上所述,满足条件的QQ0D为45或135(3)如图当点Q直线BD上方,当以点Q为圆心,BP为半径的圆与直线BD相切时过点Q做QFBD于点F,则QFBP由(2)可知,PP0BPBP0BPAB3,AD4BD5ABP0DBAAB2BP0BD9BP5BP同理,当点Q位于BD下方时,可求得BP故BP的长为或(4)由(2)可知QQ0D45则如图,点Q在过点Q0,且与BD夹角为45的线段EF上运动,当点P与点B重合时,点Q与点F重合,此时,CF431当点P与点D重合时,点Q与点E重合,此时,CE4+37EF=5过点C做CHEF于点H由面积法可知CH=CQ的取值范围为:CQ7【点睛】本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想