2022-2023学年广东省揭阳市揭西县中考数学模拟精编试卷含解析.doc

上传人:茅**** 文档编号:87068929 上传时间:2023-04-16 格式:DOC 页数:24 大小:1.45MB
返回 下载 相关 举报
2022-2023学年广东省揭阳市揭西县中考数学模拟精编试卷含解析.doc_第1页
第1页 / 共24页
2022-2023学年广东省揭阳市揭西县中考数学模拟精编试卷含解析.doc_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《2022-2023学年广东省揭阳市揭西县中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省揭阳市揭西县中考数学模拟精编试卷含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若代数式的值为零,则实数x的值为()Ax0Bx0Cx3Dx323的相反数是( )ABCD3如图,二次函数y=ax2+bx+c(a0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中1x10,1x22,下列结论:4a+2b+c0

2、,2a+b0,b2+8a4ac,a1,其中结论正确的有()A1个B2个C3个D4个4如图,AB是O的直径,CD是O的弦,ACD=30,则BAD为( )A30B50C60D705一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( )A30厘米、45厘米; B40厘米、80厘米; C80厘米、120厘米; D90厘米、120厘米6如图,ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD的周长为()A20 B16 C12 D87如图,在正五边形ABCD

3、E中,连接BE,则ABE的度数为( )A30B36C54D728如图,在矩形ABCD中,AB=3,AD=4,点E在边BC上,若AE平分BED,则BE的长为()ABCD49下列4个数:,()0,其中无理数是()ABCD()010a、b是实数,点A(2,a)、B(3,b)在反比例函数y=的图象上,则()Aab0Bba0Ca0bDb0a11由一些大小相同的小正方形搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方形的个数最少是( )A4B5C6D712已知二次函数ya(x2)2+c,当xx1时,函数值为y1;当xx2时,函数值为y2,若|x12|x22|,则下列表达式正确的是()Ay1+

4、y20By1y20Ca(y1y2)0Da(y1+y2)0二、填空题:(本大题共6个小题,每小题4分,共24分)13计算的结果等于_14RtABC中,AD为斜边BC上的高,若, 则 15如图,直线l1l2l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,FAC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为 16如图,数轴上点A所表示的实数是_17在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是_.18不透明袋子中装有5个红色球和3个

5、蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在平面直角坐标系xOy中,抛物线与轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为1将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移()个单位后与直线BC只有一个公共点,求的取值范围20(6分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上

6、的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈起跳,第一次掷得,就顺时针连续跳个边长,落在圈;若第二次掷得,就从圈开始顺时针连续跳个边长,落得圈;设游戏者从圈起跳.小贤随机掷一次骰子,求落回到圈的概率.小南随机掷两次骰子,用列表法求最后落回到圈的概率,并指出他与小贤落回到圈的可能性一样吗?21(6分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转

7、盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率22(8分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措. 二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(假设生男生女机会均等,且与顺序无关)(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好都是女孩的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中恰好是2女1男的概率23(8分)如图,A

8、BC是O的内接三角形,AB是O的直径,OFAB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且ACE+AFO=180.求证:EM是O的切线;若A=E,BC=,求阴影部分的面积.(结果保留和根号).24(10分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象已知A、B两点相距4米,探测线与地面的夹角分别是30和45,试确定生命所在点C的深度(精确到0.1米,参考数据:)25(10分)如图,已知反比例函数y与一次函数yk2xb的图象交于A(1,8),B(4,m)求k1,k2,b的值;求AOB的面积;若M(

9、x1,y1),N(x2,y2)是反比例函数y的图象上的两点,且x1x2,y1y2,指出点M,N各位于哪个象限,并简要说明理由26(12分)如图所示,正方形网格中,ABC为格点三角形(即三角形的顶点都在格点上)把ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的A1B1C1;把A1B1C1绕点A1按逆时针方向旋转90,在网格中画出旋转后的A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长27(12分)综合与实践猜想、证明与拓广问题情境:数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的

10、对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG猜想证明(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为: ;(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”小丽:连接AF,图中出现新的等腰三角形,如AFB,小凯:不妨设图中不断变化的角BAF的度数为n,并设法用n表示图中的一些角,可证明结论请你参考同学们的思路,完成证明;(3)创新小组的同学在图1中,发

11、现线段CGDF,请你说明理由;联系拓广:(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,ABC=,其余条件不变,请探究DFG的度数,并直接写出结果(用含的式子表示)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】根据分子为零,且分母不为零解答即可.【详解】解:代数式的值为零,x0,此时分母x-30,符合题意.故选A【点睛】本题考查了分式的值为零的条件若分式的值为零,需同时具备两个条件:分子的值为0,分母的值不为0,这两个条件缺一不可.2、D【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数

12、为另一个数的相反数,特别地,1的相反数还是1【详解】根据相反数的定义可得:3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3、D【解析】由抛物线的开口向下知a0,对称轴为x= 1,a0,2a+b0,当x=2时,y=4a+2b+c2,4ac4ac,a+b+c=2,则2a+2b+2c=4,4a+2b+c0,ab+c0.由,得到2a+2c2,由,得到2ac4,4a2c8,上面两个相加得到6a6,a1.故选D.点睛:本题考查了二次函数图象与系数的关系,二次函数 中,a的符号由抛物线的开口方向决定;c的符号由抛物线与y轴交点的位置决定;b的符号由对称轴位置与a的符号决定;抛物线

13、与x轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点.4、C【解析】试题分析:连接BD,ACD=30,ABD=30,AB为直径,ADB=90,BAD=90ABD=60故选C考点:圆周角定理5、C【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;所以A、B、D选项不符合题意,C选项符合题意,故选C.6、B【解析】首先证明:OE=BC,由AE+EO=4,推出AB+BC

14、=8即可解决问题;【详解】四边形ABCD是平行四边形,OA=OC,AE=EB,OE=BC,AE+EO=4,2AE+2EO=8,AB+BC=8,平行四边形ABCD的周长=28=16,故选:B【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型7、B【解析】在等腰三角形ABE中,求出A的度数即可解决问题【详解】解:在正五边形ABCDE中,A=(5-2)180=108又知ABE是等腰三角形, AB=AE,ABE=(180-108)=36故选B【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比

15、较简单8、D【解析】首先根据矩形的性质,可知AB=CD=3,AD=BC=4,D=90,ADBC,然后根据AE平分BED求得ED=AD;利用勾股定理求得EC的长,进而求得BE的长.【详解】四边形ABCD是矩形,AB=CD=3,AD=BC=4,D=90,ADBC,DAE=BEA,AE是DEB的平分线,BEA=AED,DAE=AED,DE=AD=4,再RtDEC中,EC=,BE=BC-EC=4-.故答案选D.【点睛】本题考查了矩形的性质与角平分线的性质以及勾股定理的应用,解题的关键是熟练的掌握矩形的性质与角平分线的性质以及勾股定理的应用.9、C【解析】=3,是无限循环小数,是无限不循环小数,所以是无

16、理数,故选C10、A【解析】解:,反比例函数的图象位于第二、四象限,在每个象限内,y随x的增大而增大,点A(2,a)、B(3,b)在反比例函数的图象上,ab0,故选A11、C【解析】试题分析:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=1故选C12、C【解析】分a1和a1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解【详解】解:a1时,二次函数图象开口向上,|x12|x22|,y1y2,无法确定y1+y2的正负情况,a(y1y2)1,a1时,二次函数图象开口向下,|x12|x22|

17、,y1y2,无法确定y1+y2的正负情况,a(y1y2)1,综上所述,表达式正确的是a(y1y2)1故选:C【点睛】本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据完全平方公式进行展开,然后再进行同类项合并即可.【详解】解: .故填.【点睛】主要考查的是完全平方公式及二次根式的混合运算,注意最终结果要化成最简二次根式的形式.14、【解析】利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题【详解】如图,CAB=90,且ADBC,ADB=90

18、,CAB=ADB,且B=B,CABADB,(AB:BC)1=ADB:CAB,又SABC=4SABD,则SABD:SABC=1:4,AB:BC=1:115、【解析】试题解析:AH=2,HB=1,AB=AH+BH=3,l1l2l3,考点:平行线分线段成比例16、【解析】A点到-1的距离等于直角三角形斜边的长度,应用勾股定理求解出直角三角形斜边长度即可.【详解】解:直角三角形斜边长度为,则A点到-1的距离等于,则A点所表示的数为:1+【点睛】本题考查了利用勾股定理求解数轴上点所表示的数.17、【解析】首先根据题意列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案

19、注意此题属于放回实验【详解】列表得:第一次 第二次黑白白黑黑,黑白,黑白,黑白黑,白白,白白,白白黑,白白,白白,白共有9种等可能的结果,两次都摸到黑球的只有1种情况,两次都摸到黑球的概率是.故答案为:.【点睛】考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.18、 【解析】分析:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值即其发生的概率.详解:由于共有8个球,其中篮球有5个,则从袋子中摸出一个球,摸出蓝球的概率是 ,故答案是 点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件 A出现m种结果,那么事件A的概

20、率P(A)= 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)(2)【解析】试题分析:(1)首先根据抛物线求出与轴交于点A,顶点为点B的坐标,然后求出点A关于抛物线的对称轴对称点C的坐标,设设直线BC的解析式为代入点B,点C的坐标,然后解方程组即可;( 2)求出点D、E、F的坐标,设点A平移后的对应点为点,点D平移后的对应点为点当图象G向下平移至点与点E重合时, 点在直线BC上方,此时t=1;当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2从而得出.试题解析:解:(1)抛物线与轴交于点A,点A的坐标为(0,2) 1分,抛物线的对称轴为直

21、线,顶点B的坐标为(1,) 2分又点C与点A关于抛物线的对称轴对称, 点C的坐标为(2,2),且点C在抛物线上设直线BC的解析式为直线BC经过点B(1,)和点C(2,2),解得直线BC的解析式为 2分(2)抛物线中,当时,点D的坐标为(1,6) 1分直线中,当时,当时,如图,点E的坐标为(0,1),点F的坐标为(1,2)设点A平移后的对应点为点,点D平移后的对应点为点当图象G向下平移至点与点E重合时, 点在直线BC上方,此时t=1; 5分当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2 6分结合图象可知,符合题意的t的取值范围是 7分考点:1.二次函数的性质;2.待定系数法求解析

22、式;2.平移.20、(1)落回到圈的概率;(2)可能性不一样.【解析】(1)由共有6种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案【详解】(1)掷一次骰子有种等可能的结果,只有掷的时,才会落回到圈,落回到圈的概率;(2)列表得:123456123456共有种等可能的结果,当两次掷得的数字之和为的倍数,即时,才可能落回到圈,这种情况共有种,,可能性不一样【点睛】本题考查了用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事

23、件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比21、(1);(2).【解析】【分析】(1)根据题意可求得2个“2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120,所以2个“2”所占的扇形圆心角为3602120120,转动转盘一次,求转出的数字是2的概率为;(2)由(1)可知,该转盘转出“1”、“3”、“2”的概率相同,均为,所有可能性如下表所示:第一

24、次 第二次1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比22、(1)P(两个小孩都是女孩);(2)P(三个小孩中恰好是2女1男).【解析】(1)画出树状图即可解题,(2)画出树状图即可解题.【详解】(1)画树状图如下:由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好都是女孩的有1种可能,P(两个小孩都是女孩).(2)画树状图如下:由树状图可知,生育两胎共有8种等可能结果

25、,其中这三个小孩中恰好是2女1男的有3种结果,P(三个小孩中恰好是2女1男).【点睛】本题考查了画树状图求解概率,中等难度,画出树状图找到所有可能性是解题关键.23、(1)详见解析;(2);【解析】(1)连接OC,根据垂直的定义得到AOF=90,根据三角形的内角和得到ACE=90+A,根据等腰三角形的性质得到OCE=90,得到OCCE,于是得到结论;(2)根据圆周角定理得到ACB=90,推出ACO=BCE,得到BOC是等边三角形,根据扇形和三角形的面积公式即可得到结论【详解】:(1)连接OC,OFAB,AOF=90,A+AFO+90=180,ACE+AFO=180,ACE=90+A,OA=OC

26、,A=ACO,ACE=90+ACO=ACO+OCE,OCE=90,OCCE,EM是O的切线;(2)AB是O的直径,ACB=90,ACO+BCO=BCE+BCO=90,ACO=BCE,A=E,A=ACO=BCE=E,ABC=BCO+E=2A,A=30,BOC=60,BOC是等边三角形,OB=BC=,阴影部分的面积=,【点睛】本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC 是解题的关键24、5.5米【解析】过点C作CDAB于点D,设CD=x,在RtACD中表示出AD,在RtBCD中表示出BD,再由AB=4米,即可得出关于x的方程,解出即可.【详解】解:过点C作CDAB于点D

27、,设CD=x,在RtACD中,CAD=30,则AD=CD=x.在RtBCD中,CBD=45,则BD=CD=x.由题意得,xx=4,解得:.答:生命所在点C的深度为5.5米.25、 (1) k11,b6(1)15(3)点M在第三象限,点N在第一象限【解析】试题分析:(1)把A(1,8)代入求得=8,把B(-4,m)代入求得m=-1,把A(1,8)、B(-4,-1)代入求得、b的值;(1)设直线y=1x+6与x轴的交点为C,可求得OC的长,根据SABC=SAOC+SBOC即可求得AOB的面积;(3)由可知有三种情况,点M、N在第三象限的分支上,点M、N在第一象限的分支上, M在第三象限,点N在第一

28、象限,分类讨论把不合题意的舍去即可试题解析:解:(1)把A(1,8), B(-4,m)分别代入,得=8,m=-1A(1,8)、B(-4,-1)在图象上,解得,(1)设直线y=1x+6与x轴的交点为C,当y=0时,x=-3,OC=3SABC=SAOC+SBOC=(3)点M在第三象限,点N在第一象限若0,点M、N在第三象限的分支上,则,不合题意;若0,点M、N在第一象限的分支上,则,不合题意;若0,M在第三象限,点N在第一象限,则0,符合题意考点:反比例函数与一次函数的交点坐标;用待定系数法求函数表达式;反比例函数的性质26、(1)(2)作图见解析;(3)【解析】(1)利用平移的性质画图,即对应点

29、都移动相同的距离(2)利用旋转的性质画图,对应点都旋转相同的角度(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长【详解】解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,A1B1C1即为所求(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90,得到B2,C2,连接B2C2,A1B2C2即为所求(3),点B所走的路径总长=考点:1网格问题;2作图(平移和旋转变换);3勾股定理;4弧长的计算27、 (1) GF=GD,GFGD;(2)见解析;(3)见解析;(4) 90.【解析】(1)根据四边形ABCD是正方形可得

30、ABD=ADB=45,BAD=90,点D关于直线AE的对称点为点F,即可证明出DBF=90,故GFGD,再根据F=ADB,即可证明GF=GD;(2)连接AF,证明AFG=ADG,再根据四边形ABCD是正方形,得出AB=AD,BAD=90,设BAF=n,FAD=90+n,可得出FGD=360FADAFGADG=360(90+n)(180n)=90,故GFGD;(3)连接BD,由(2)知,FG=DG,FGDG,再分别求出GFD与DBC的角度,再根据三角函数的性质可证明出BDFCDG,故DGC=FDG,则CGDF;(4)连接AF,BD,根据题意可证得DAM=902=901,DAF=2DAM=1802

31、1,再根据菱形的性质可得ADB=ABD=,故AFB+DBF+ADB+DAF=(DFG+1)+(DFG+1+)+(18021)=360,2DFG+21+21=180,即可求出DFG【详解】解:(1)GF=GD,GFGD,理由:四边形ABCD是正方形,ABD=ADB=45,BAD=90,点D关于直线AE的对称点为点F,BAD=BAF=90,F=ADB=45,ABF=ABD=45,DBF=90,GFGD,BAD=BAF=90,点F,A,D在同一条线上,F=ADB,GF=GD,故答案为GF=GD,GFGD;(2)连接AF,点D关于直线AE的对称点为点F,直线AE是线段DF的垂直平分线,AF=AD,GF

32、=GD,1=2,3=FDG,1+3=2+FDG,AFG=ADG,四边形ABCD是正方形,AB=AD,BAD=90,设BAF=n,FAD=90+n,AF=AD=AB,FAD=ABF,AFB+ABF=180n,AFB+ADG=180n,FGD=360FADAFGADG=360(90+n)(180n)=90,GFDG,(3)如图2,连接BD,由(2)知,FG=DG,FGDG,GFD=GDF=(180FGD)=45,四边形ABCD是正方形,BC=CD,BCD=90,BDC=DBC=(180BCD)=45,FDG=BDC,FDGBDG=BDCBDG,FDB=GDC,在RtBDC中,sinDFG=sin4

33、5=,在RtBDC中,sinDBC=sin45=,BDFCDG,FDB=GDC,DGC=DFG=45,DGC=FDG,CGDF;(4)90,理由:如图3,连接AF,BD,点D与点F关于AE对称,AE是线段DF的垂直平分线,AD=AF,1=2,AMD=90,DAM=FAM,DAM=902=901,DAF=2DAM=18021,四边形ABCD是菱形,AB=AD,AFB=ABF=DFG+1,BD是菱形的对角线,ADB=ABD=,在四边形ADBF中,AFB+DBF+ADB+DAF=(DFG+1)+(DFG+1+)+(18021)=3602DFG+21+21=180,DFG=90【点睛】本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练的掌握正方形、菱形、相似三角形的性质.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 初中数学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁