《广东省佛山市南海区新芳华校2023届中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省佛山市南海区新芳华校2023届中考数学仿真试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,M是ABC的边BC的中点,AN平分
2、BAC,BNAN于点N,且AB=10,BC=15,MN=3,则AC的长是()A12B14 C16D182如图,ABC中,BC4,P与ABC的边或边的延长线相切若P半径为2,ABC的面积为5,则ABC的周长为( )A8B10C13D143如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知SAEF=4,则下列结论:;SBCE=36;SABE=12;AEFACD,其中一定正确的是()ABCD4为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列
3、结论错误的是()A极差是3.5B众数是1.5C中位数是3D平均数是35实数a、b在数轴上的对应点的位置如图所示,则正确的结论是()Aa1Bab0Cab0Da+b06如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:AME=90;BAF=EDB;BMO=90;MD=2AM=4EM;其中正确结论的是( )ABCD7如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(4,0),顶点B在第二象限,BAO=60,BC交y轴于点D,DB:DC=3:1若函数(k0,x0)的图象经过点C,则k的值为()A B C D8如图,二次函数的图象开口向
4、下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是ABCD9如图,ABCD,E为CD上一点,射线EF经过点A,EC=EA若CAE=30,则BAF=()A30 B40 C50 D6010将一副三角板按如图方式摆放,1与2不一定互补的是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11计算(5ab3)2的结果等于_12如图,在ABC中,CA=CB,ACB=90,AB=2,点D为AB的中点,以点D为圆心作圆心角为90的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为_13已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_14如图,在ABC中
5、,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若A=32,则CDB的大小为_度15如图,ABCD的周长为36,对角线AC,BD相交于点O点E是CD的中点,BD=12,则DOE的周长为 16如图,在四边形ABCD中,AC、BD相交于点E,若,则_17如图,ABC中,ACB=90,ABC=25,以点C为旋转中心顺时针旋转后得到ABC,且点A在AB上,则旋转角为_. 三、解答题(共7小题,满分69分)18(10分)某花卉基地种植了郁金香和玫瑰两种花卉共 30 亩,有关数据如表:成本(单位:万元/亩)销售额(单位:万元/亩)郁金香2.43玫瑰22.5(1)设种植郁金
6、香 x 亩,两种花卉总收益为 y 万元,求 y 关于 x 的函数关系式(收益=销售额成本)(2) 若计划投入的成本的总额不超过 70 万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?19(5分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:本次调查人数共 人,使用过共享单车的有 人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在24千米的有多少人?20(8分)如图,
7、是的直径,是圆上一点,弦于点,且过点作的切线,过点作的平行线,两直线交于点,的延长线交的延长线于点(1)求证:与相切;(2)连接,求的值21(10分)已知,关于x的方程x2+2x-k=0有两个不相等的实数根(1)求k的取值范围;(2)若x1,x2是这个方程的两个实数根,求的值;(3)根据(2)的结果你能得出什么结论?22(10分)某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于
8、B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?23(12分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨已知从A粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?24(14分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价
9、p(元/千克)与时间第t(天)之间的函数关系为:p= t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】延长线段BN交AC于E.AN平分BAC,BAN=EAN.在ABN与AEN中,BAN=EAN,AN=AN,ANB=ANE=90,ABNAEN(ASA),AE=AB=10,BN=NE.又M是ABC的边BC的中点,CE=2MN=23=6,AC=AE+CE=10+6=
10、16.故选C.2、C【解析】根据三角形的面积公式以及切线长定理即可求出答案【详解】连接PE、PF、PG,AP,由题意可知:PECPFAPGA90,SPBCBCPE424,由切线长定理可知:SPFC+SPBGSPBC4,S四边形AFPGSABC+SPFC+SPBG+SPBC5+4+413,由切线长定理可知:SAPGS四边形AFPG,AGPG,AG,由切线长定理可知:CECF,BEBG,ABC的周长为AC+AB+CE+BEAC+AB+CF+BGAF+AG2AG13,故选C【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型3、D【解析】在ABCD中,AO=AC,
11、点E是OA的中点,AE=CE,ADBC,AFECBE,=,AD=BC,AF=AD,;故正确;SAEF=4, =()2=,SBCE=36;故正确; =,=,SABE=12,故正确;BF不平行于CD,AEF与ADC只有一个角相等,AEF与ACD不一定相似,故错误,故选D4、C【解析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【详解】A.极差为51.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为(2.5+3)=2.75,此选项错误;D.平均数为:(1.5+1.5+2+2.
12、5+3+4+4.5+5)=3,此选项正确.故选C.【点睛】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.5、C【解析】直接利用a,b在数轴上的位置,进而分别对各个选项进行分析得出答案【详解】选项A,从数轴上看出,a在1与0之间,1a0,故选项A不合题意;选项B,从数轴上看出,a在原点左侧,b在原点右侧,a0,b0,ab0,故选项B不合题意;选项C,从数轴上看出,a在b的左侧,ab,即ab0,故选项C符合题意;选项D,从数轴上看出,a在1与0之间,1b2,|a|b|,a0,b0,所以a+b|b|a|0,故选项D
13、不合题意故选:C【点睛】本题考查数轴和有理数的四则运算,解题的关键是掌握利用数轴表示有理数的大小.6、D【解析】根据正方形的性质可得AB=BC=AD,ABC=BAD=90,再根据中点定义求出AE=BF,然后利用“边角边”证明ABF和DAE全等,根据全等三角形对应角相等可得BAF=ADE,然后求出ADE+DAF=BAD=90,从而求出AMD=90,再根据邻补角的定义可得AME=90,从而判断正确;根据中线的定义判断出ADEEDB,然后求出BAFEDB,判断出错误;根据直角三角形的性质判断出AED、MAD、MEA三个三角形相似,利用相似三角形对应边成比例可得,然后求出MD=2AM=4EM,判断出正
14、确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出正确;过点M作MNAB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GHAB,过点O作OKGH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出BMO=90,从而判断出正确【详解】在正方形ABCD中,AB=BC=AD,ABC=BAD=90,E、F分别为边AB,BC的中点,AE=BF=BC,在ABF和DAE中, ,ABFDAE(SAS),BAF=ADE,BAF+DAF=BAD=90,
15、ADE+DAF=BAD=90,AMD=180-(ADE+DAF)=180-90=90,AME=180-AMD=180-90=90,故正确;DE是ABD的中线,ADEEDB,BAFEDB,故错误;BAD=90,AMDE,AEDMADMEA,AM=2EM,MD=2AM,MD=2AM=4EM,故正确;设正方形ABCD的边长为2a,则BF=a,在RtABF中,AF= BAF=MAE,ABC=AME=90,AMEABF, ,即,解得AM= MF=AF-AM=,AM=MF,故正确;如图,过点M作MNAB于N,则 即 解得MN=,AN=,NB=AB-AN=2a-=,根据勾股定理,BM=过点M作GHAB,过点
16、O作OKGH于K,则OK=a-=,MK=-a=,在RtMKO中,MO=根据正方形的性质,BO=2a,BM2+MO2= BM2+MO2=BO2,BMO是直角三角形,BMO=90,故正确;综上所述,正确的结论有共4个故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键7、D【解析】解:四边形ABCD是平行四边形,点A的坐标为(4,0),BC=4,DB:DC=3:1,B(3,OD),C(1,OD),BAO=60,COD=30,OD=,C(1,
17、),k=,故选D点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键8、D【解析】【分析】根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案【详解】由二次函数的图象可知,当时,的图象经过二、三、四象限,观察可得D选项的图象符合,故选D【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.9、D【解析】解:EC=EACAE=30,C=30,AED=30+30=60ABCD,BAF=AED=60故选D点睛:本题考查的是平行线的性质,熟知两直线
18、平行,同位角相等是解答此题的关键10、D【解析】A选项:1+2=360902=180;B选项:2+3=90,3+4=90,2=4,1+4=180,1+2=180;C选项:ABC=DEC=90,ABDE,2=EFC,1+EFC=180,1+2=180;D选项:1和2不一定互补.故选D.点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出1和2的互补关系.二、填空题(共7小题,每小题3分,满分21分)11、25a2b1【解析】代数式内每项因式均平方即可.【详解】解:原式=25a2b1.【点睛】本题考查了代数式的乘方.12、【解析】连接CD,根据题意可得DCEBDF,阴影部分的面
19、积等于扇形的面积减去BCD的面积【详解】解:连接CD,作DMBC,DNACCA=CB,ACB=90,点D为AB的中点,DC=AB=1,四边形DMCN是正方形,DM=则扇形FDE的面积是:CA=CB,ACB=90,点D为AB的中点,CD平分BCA,又DMBC,DNAC,DM=DN,GDH=MDN=90,GDM=HDN,则在DMG和DNH中, ,DMGDNH(AAS),S四边形DGCH=S四边形DMCN=则阴影部分的面积是: 故答案为:【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明DMGDNH,得到S四边形DGCH=S四边形DMCN是关键13、1.1【解析】【分析】先判断
20、出x,y中至少有一个是1,再用平均数求出x+y=11,即可得出结论【详解】一组数据4,x,1,y,7,9的众数为1,x,y中至少有一个是1,一组数据4,x,1,y,7,9的平均数为6,(4+x+1+y+7+9)=6,x+y=11,x,y中一个是1,另一个是6,这组数为4,1,1,6,7,9,这组数据的中位数是(1+6)=1.1,故答案为:1.1【点睛】本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一个是1是解本题的关键.14、1【解析】根据等腰三角形的性质以及三角形内角和定理在ABC中可求得ACB=ABC=74,根据等腰三角形的性质以及三角形外角
21、的性质在BCD中可求得CDB=CBD=ACB=1【详解】AB=AC,A=32,ABC=ACB=74,又BC=DC,CDB=CBD=ACB=1,故答案为1【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用15、1【解析】ABCD的周长为33,2(BC+CD)=33,则BC+CD=2四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,OD=OB=BD=3又点E是CD的中点,OE是BCD的中位线,DE=CDOE=BCDOE的周长=OD+OE+DE= OD +(BC+CD)=3+9=1,即DOE的周长为116、【解析】利用相似
22、三角形的性质即可求解;【详解】解: ABCD,AEBCED, , ,故答案为 【点睛】本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质17、50度【解析】由将ACB绕点C顺时针旋转得到ABC,即可得ACBABC,则可得A=BAC,AAC是等腰三角形,又由ACB中,ACB=90,ABC=25,即可求得A、BAB的度数,即可求得ACB的度数,继而求得BCB的度数【详解】将ACB绕点C顺时针旋转得到,ACB,A=BAC,AC=CA,BAC=CAA,ACB中,ACB=90,ABC=25,BAC=90ABC=65,BAC=CAA=65,BAB=1806565=50,ACB=18025
23、5065=40,BCB=9040=50.故答案为50.【点睛】此题考查了旋转的性质、直角三角形的性质以及等腰三角形的性质此题难度不大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用三、解答题(共7小题,满分69分)18、(1)y = 0.1x + 15,(2)郁金香 25 亩,玫瑰 5 亩【解析】(1)根据题意和表格中的数据可得到y关于x的函数;(2)根据题意可列出相应的不等式,再根据(1)中的函数关系式即可求解.【详解】(1)由题意得y=(3-2.4)x-(2.5-2)(30-x)=0.1x+15即y关于x的函数关系式为y=0.1x+15(2)由题意得2.4x+2(30-x)70解得
24、x25,y=0.1x+15当x=25时,y最大=17.530-x=5,要使获得的收益最大,基地应种植郁金香25亩和玫瑰5亩.【点睛】此题主要考查一次函数的应用,解题的关键是根据题意进行列出关系式与不等式进行求解.19、(1)200,90 (2)图形见解析(3)750人【解析】试题分析:(1)用对于共享单车不了解的人数20除以对于共享单车不了解的人数所占得百分比即可得本次调查人数;用总人数乘以使用过共享单车人数所占的百分比即可得使用过共享单车的人数;(2)用使用过共享单车的总人数减去02,46,68的人数,即可得24的人数,再图上画出即可;(3)用3000乘以骑行路程在24千米的人数所占的百分比
25、即可得每天的骑行路程在24千米的人数.试题解析:(1)2010%=200,200(1-45%-10%)=90 ; (2)90-25-10-5=50,补全条形统计图 (3)=750(人) 答: 每天的骑行路程在24千米的大约750人20、(1)见解析;(2)【解析】(1)连接,易证为等边三角形,可得,由等腰三角形的性质及角的和差关系可得1=30,由于可得DCG=CDA=60,即可求出OCG=90,可得与相切;(2)作于点设,则,根据两组对边互相平行可证明四边形为平行四边形,由可证四边形为菱形,由(1)得,从而可求出、的值,从而可知的长度,利用锐角三角函数的定义即可求出的值【详解】(1)连接,是的
26、直径,弦于点,为等边三角形,DAE=EAC=30,OA=OC,OAC=OCA=30,1=DCA-OCA=30,DCG=CDA=60,OCG=DCG+1=60+30=90,与相切(2)连接EF,作于点设,则,与相切,又,又,四边形为平行四边形,四边形为菱形,由(1)得,在中,【点睛】本题考查圆的综合问题,涉及切线的判定与性质,菱形的判定与性质,等边三角形的性质及锐角三角函数,考查学生综合运用知识的能力,熟练掌握相关性质是解题关键.21、(1)k-1;(2)2;(3)k-1时,的值与k无关【解析】(1)由题意得该方程的根的判别式大于零,列出不等式解答即可.(2)将要求的代数式通分相加转化为含有两根
27、之和与两根之积的形式,再根据根与系数的关系代数求值即可.(3)结合(1)和(2)结论可见,k-1时,的值为定值2,与k无关【详解】(1)方程有两个不等实根,0,即4+4k0,k-1 (2)由根与系数关系可知x1+x2=-2 ,x1x2=-k, (3)由(1)可知,k-1时,的值与k无关【点睛】本题考查了一元二次方程的根的判别式,根与系数的关系等知识,熟练掌握相关知识点是解答关键.22、(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【解析】试题分析:(1)设该基地种植A种生姜x亩,那么种植B
28、种生姜(30-x)亩,根据:A种生姜的产量+B种生姜的产量=总产量,列方程求解;(2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据题意,2000x+2500(30-x)=68000,解得x=14,30-x=16,答:种植A种生姜14亩,种植B种生姜16亩;(2)由题意得,x(30-x),解得x10,设全部收购该基地生姜的年总收入为y元,则y=82000x+72500(30-x)=-1500x+525000,y随x的增
29、大而减小,当x=10时,y有最大值,此时,30-x=20,y的最大值为510000元,答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【点睛】本题考查了一次函数的应用关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式23、(1)w200x+8600(0x6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台
30、,D市2台;最低运费是8600元【解析】(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用A运往C的运费+A运往D的运费+B运往C的运费+B运往D的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案【详解】解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6x吨,A粮仓运往C市粮食10x吨,A粮仓运往D市粮食12(10x)x+2吨,总运费w300x+500(6x)+400(10x)+800(x+
31、2)200x+8600(0x6)(2)200x+86009000解得x2共有3种调运方案方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)w200x+8600k0,所以当x0时,总运费最低也就是从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;最低运费是8600元【点睛】本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意
32、义24、 (1)y=2t+200(1t80,t为整数); (2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件【解析】(1)根据函数图象,设解析式为y=kt+b,将(1,198)、(80,40)代入,利用待定系数法求解可得;(2)设日销售利润为w,根据“总利润=每千克利润销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;(3)求出w=2400时t的值,结合函数图象即可得出答案;【详解】(1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得: ,解得:,y=2t+200(1t80,t为整数); (2)设日销售利润为w,则w=(p6)y,当1t80时,w=(t+166)(2t+200)=(t30)2+2450, 当t=30时,w最大=2450;第30天的日销售利润最大,最大利润为2450元 (3)由(2)得:当1t80时,w=(t30)2+2450,令w=2400,即 (t30)2+2450=2400,解得:t1=20、t2=40,t的取值范围是20t40,共有21天符合条件【点睛】本题考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象解不等式及二次函数的图象与性质是解题关键