《2023届广东省佛山市南海区桂城街道中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省佛山市南海区桂城街道中考五模数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1按如下方法,将ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得DEF,则下列说法正确的个数是()ABC与DEF是位似图形ABC与DEF
2、是相似图形ABC与DEF的周长比为1:2ABC与DEF的面积比为4:1A1B2C3D421903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为()A810 年B1620 年C3240 年D4860 年3如图,PB切O于点B,PO交O于点E,延长PO交O于点A,连结AB,O的半径ODAB于点C,BP=6,P=30,则CD的长度是()ABCD24如图,在RtABC中
3、,ACB=90,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180后点B与点A恰好重合,则图中阴影部分的面积为()ABCD5学校小组名同学的身高(单位:)分别为:,则这组数据的中位数是( )ABCD6某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A B C D7如图,已知点A(1,0),B(0,2),以AB为边在第一象限内作正方形ABCD,直线CD与y轴交于点G,再以DG为边在第一象限内作正方形DEFG,若反比例函数的图像经过点E,则k的值是 ( ) (A)33 (B)34 (C)35 (D)368下列命题是真命题的是()A一组对边平
4、行,另一组对边相等的四边形是平行四边形B两条对角线相等的四边形是平行四边形C两组对边分别相等的四边形是平行四边形D平行四边形既是中心对称图形,又是轴对称图形9如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为()ABCD10一元二次方程x2+kx3=0的一个根是x=1,则另一个根是( )A3B1C3D2二、填空题(本大题共6个小题,每小题3分,共18分)11一艘货轮以18km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的
5、南偏东15方向,则此时货轮与灯塔B的距离是_km.12如图,在RtABC中,ACB=90,点D、E、F分别是AB、AC、BC的中点,若CD=5,则EF的长为_13如图,宽为的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则的值为_14计算:(3+1)(31)= 15若方程 x2+(m21)x+1+m0的两根互为相反数,则 m_16如图,ABC中,DE垂直平分AC交AB于E,A=30,ACB=80,则BCE=_ 三、解答题(共8题,共72分)17(8分)如图,港口B位于港口A的南偏东37方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方
6、向航行5 km到达E处,测得灯塔C在北偏东45方向上,这时,E处距离港口A有多远?(参考数据:sin 370.60,cos 370.80,tan 370.75)18(8分)如图,在RtABC中,ABAC,D、E是斜边BC上的两点,EAD45,将ADC绕点A顺时针旋转90,得到AFB,连接EF求证:EFED;若AB2,CD1,求FE的长19(8分)如图,热气球的探测器显示,从热气球 A 看一栋髙楼顶部 B 的仰角为 30,看这栋高楼底部 C 的 俯角为 60,热气球 A 与高楼的水平距离为 120m,求这栋高楼 BC 的高度 20(8分)计算:(2016)0+|3|4cos4521(8分)某商店
7、销售两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需280元;购买3个A品牌和1个B品牌的计算器共需210元()求这两种品牌计算器的单价;()开学前,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的九折销售,B品牌计算器10个以上超出部分按原价的七折销售设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1,y2关于x的函数关系式()某校准备集体购买同一品牌的计算器,若购买计算器的数量超过15个,购买哪种品牌的计算器更合算?请说明理由22(10分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,2)求反比例函数的解析式;观察
8、图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论23(12分)已知O的直径为10,点A,点B,点C在O上,CAB的平分线交O于点D(I)如图,若BC为O的直径,求BD、CD的长;(II)如图,若CAB=60,求BD、BC的长24已知:如图,在平面直角坐标系xOy中,直线AB分别与x轴、y轴交于点B,A,与反比例函数的图象分别交于点C,D,CEx轴于点E,tanABO=,OB=4,OE=1(1)求该反比例函数的解析式;(1)求三角形CDE的面积参考答案一、选择题(共10小题,每小题3分
9、,共30分)1、C【解析】根据位似图形的性质,得出ABC与DEF是位似图形进而根据位似图形一定是相似图形得出 ABC与DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案【详解】解:根据位似性质得出ABC与DEF是位似图形,ABC与DEF是相似图形,将ABC的三边缩小的原来的,ABC与DEF的周长比为2:1,故选项错误,根据面积比等于相似比的平方,ABC与DEF的面积比为4:1故选C【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键2、B【解析】根据半衰期的定义,函数图象的横坐标,可得答案【详解】由横坐标看出1620年时,镭质量
10、减为原来的一半,故镭的半衰期为1620年,故选B【点睛】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键3、C【解析】连接OB,根据切线的性质与三角函数得到POB=60,OB=OD=2,再根据等腰三角形的性质与三角函数得到OC的长,即可得到CD的长.【详解】解:如图,连接OB,PB切O于点B,OBP=90,BP=6,P=30,POB=60,OD=OB=BPtan30=6=2,OA=OB,OAB=OBA=30,ODAB,OCB=90,OBC=30,则OC=OB=,CD=.故选:C【点睛】本题主要考查切线的性质与锐角的三角函数,解此题的关键在于利用切线的性质得到相关线段与角度的
11、值,再根据圆和等腰三角形的性质求解即可.4、B【解析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可【详解】由旋转可知AD=BD,ACB=90,AC=2,CD=BD,CB=CD,BCD是等边三角形,BCD=CBD=60,BC=AC=2,阴影部分的面积=222=2.故答案选:B.【点睛】本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.5、C【解析】根据中位数的定义进行解答【详解】将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.【点睛】本题主要考查中位数,解题的关键是
12、熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.6、B【解析】从几何体的正面看可得下图,故选B7、D【解析】试题分析:过点E作EMOA,垂足为M,A(1,0),B(0,2),OA-1,OB=2,又AOB=90,AB=,AB/CD,ABO=CBG,BCG=90,BCGAOB,BC=AB=,CG=2,CD=AD=AB=,DG=3,DE=DG=3,AE=4,BAD=90,EAM+BAO=90,BAO+ABO=90,EAM=ABO,又EMA=90,EAMABO,即,AM=8,EM=4,AM=9,E(9,4),k=49=3
13、6;故选D考点:反比例函数综合题8、C【解析】根据平行四边形的五种判定定理(平行四边形的判定方法:两组对边分别平行的四边形;两组对角分别相等的四边形;两组对边分别相等的四边形;一组对边平行且相等的四边形;对角线互相平分的四边形)和平行四边形的性质进行判断【详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形故本选项错误;C、两组对边分别相等的四边形是平行四边形故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形故本选项错误;故选:C【点睛】考查了平行四边形的判定与性质平行四边形的判定方法共有五种,应用时要认真领会它们之间的
14、联系与区别,同时要根据条件合理、灵活地选择方法9、A【解析】设身高GE=h,CF=l,AF=a,当xa时,在OEG和OFC中,GOE=COF(公共角),AEG=AFC=90,OEGOFC,a、h、l都是固定的常数,自变量x的系数是固定值,这个函数图象肯定是一次函数图象,即是直线;影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大故选A10、C【解析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根设m、n是方程x2+kx3=0的两个实数根,且m=x=1;则有:mn=3,即n=3;故选C【考点】根与系数的关系;一元二次方程的解二、填
15、空题(本大题共6个小题,每小题3分,共18分)11、1【解析】作CEAB于E,根据题意求出AC的长,根据正弦的定义求出CE,根据三角形的外角的性质求出B的度数,根据正弦的定义计算即可【详解】作CEAB于E,1km/h30分钟=9km,AC=9km,CAB=45,CE=ACsin45=9km,灯塔B在它的南偏东15方向,NCB=75,CAB=45,B=30,BC=1km,故答案为:1【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键12、5【解析】已知CD是RtABC斜边AB的中线,那么AB=2CD;EF是ABC的中位线,则EF应等于AB的一半
16、【详解】ABC是直角三角形,CD是斜边的中线,CD= AB,又EF是ABC的中位线,AB=2CD=25=10,EF=10=5.故答案为5.【点睛】本题主要考查三角形中位线定理, 直角三角形斜边上的中线,熟悉掌握是关键.13、16【解析】设小长方形的宽为a,长为b,根据大长方形的性质可得5a=3b,m=a+b= a+=,再根据m的取值范围即可求出a的取值范围,又因为小长方形的边长为整数即可解答.【详解】解:设小长方形的宽为a,长为b,由题意得:5a=3b,所以b=,m=a+b= a+=,因为,所以1020,解得:a ,又因为小长方形的边长为整数,a=4、5、6、7,因为b=,所以5a是3的倍数,
17、即a=6,b=10,m= a+b=16.故答案为:16.【点睛】本题考查整式的列式、取值,解题关键是根据矩形找出小长方形的边长关系.14、1【解析】根据平方差公式计算即可【详解】原式=(3)2-12=18-1=1故答案为1【点睛】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键15、1【解析】根据“方程 x2+(m21)x+1+m0 的两根互为相反数”,利用一元二次方程根与系数的关系,列出关于 m 的等式,解之,再把 m 的值代入原方程, 找出符合题意的 m 的值即可【详解】方程 x2+(m21)x+1+m0 的两根互为相反数,1m20,解得:m1 或1,把 m1代入
18、原方程得:x2+20,该方程无解,m1不合题意,舍去,把 m1代入原方程得: x20,解得:x1x20,(符合题意),m1,故答案为1【点睛】本题考查了根与系数的关系,正确掌握一元二次方程两根之和,两个之积与系数之间的关系式解题的关键若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.16、1【解析】根据ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出ACE=A=30,再根据ACB=80即可解答【详解】DE垂直平分AC,A=30,AE=CE,ACE=A=30,ACB=80,BCE=80-30=1故答案为:1三、解答题(共8题,共72分)17、35km【解析】试题分
19、析:如图作CHAD于H设CH=xkm,在RtACH中,可得AH=,在RtCEH中,可得CH=EH=x,由CHBD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解决问题试题解析:如图,作CHAD于H设CH=xkm,在RtACH中,A=37,tan37=,AH=,在RtCEH中,CEH=45,CH=EH=x,CHAD,BDAD,CHBD,AC=CB,AH=HD,=x+5,x=15,AE=AH+HE=+1535km,E处距离港口A有35km18、(1)见解析;(2)EF.【解析】(1)由旋转的性质可求FAEDAE45,即可证AEFAED,可得EFED;(2)由旋转的性质可证FBE90
20、,利用勾股定理和方程的思想可求EF的长【详解】(1)BAC90,EAD45,BAE+DAC45,将ADC绕点A顺时针旋转90,得到AFB,BAFDAC,AFAD,CDBF,ABFACD45,BAF+BAE45FAE,FAEDAE,ADAF,AEAE,AEFAED(SAS),DEEF(2)ABAC2,BAC90,BC4,CD1,BF1,BD3,即BE+DE3,ABFABC45,EBF90,BF2+BE2EF2,1+(3EF)2EF2,EF【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,利用方程的思想解决问题是本题的关键19、这栋高楼的高度是【解析】过A
21、作ADBC,垂足为D,在直角ABD与直角ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解【详解】过点A作ADBC于点D,依题意得,AD=120,在RtABD中,在RtADC中, ,答:这栋高楼的高度是.【点睛】本题主要考查了解直角三角形的应用-仰角俯角问题,难度适中对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算20、1【解析】根据二次根式性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值依次计算后合并即可【详解】解:原式=11+34=1【点睛】本题考查实数的运算及特殊角三角形函数值21、(1)A种品牌计算器50元/个,B种品牌计算器60元
22、/个;(2)y1=45x, y2= ;(3)详见解析.【解析】(1)根据题意列出二元一次方程组并求解即可;(2)按照“购买所需费用=折扣单价数量”列式即可,注意B品牌计算器的采购要分0x10和x10两种情况考虑;(3)根据上问所求关系式,分别计算当x15时,由y1=y2、y1y2、y1y2确定其分别对应的销量范围,从而确定方案.【详解】()设A、B两种品牌的计算器的单价分别为a元、b元,根据题意得,解得:,答:A种品牌计算器50元/个,B种品牌计算器60元/个;()A品牌:y1=50x0.9=45x;B品牌:当0x10时,y2=60x,当x10时,y2=1060+60(x10)0.7=42x+
23、180,综上所述:y1=45x,y2=;()当y1=y2时,45x=42x+180,解得x=60,即购买60个计算器时,两种品牌都一样;当y1y2时,45x42x+180,解得x60,即购买超过60个计算器时,B品牌更合算;当y1y2时,45x42x+180,解得x60,即购买不足60个计算器时,A品牌更合算,当购买数量为15时,显然购买A品牌更划算.【点睛】本题考查了二元一次方程组的应用.22、(1)(2)1x0或x1(3)四边形OABC是平行四边形;理由见解析【解析】(1)设反比例函数的解析式为(k0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式(2)直接由图象得出
24、正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CBOA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC【详解】解:(1)设反比例函数的解析式为(k0)A(m,2)在y=2x上,2=2m,解得m=1A(1,2)又点A在上,解得k=2,反比例函数的解析式为(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为1x0或x1(3)四边形OABC是菱形证明如下: A(1,2),由题意知:CBOA且CB=,CB=OA四边形OABC是平行四边形C(2,n)在上,C(2,1)OC=OA平行四边形OABC是菱形23、(1)BD=CD=5;(2)BD
25、=5,BC=5【解析】(1)利用圆周角定理可以判定DCB是等腰直角三角形,利用勾股定理即可解决问题;(2)如图,连接OB,OD由圆周角定理、角平分线的性质以及等边三角形的判定推知OBD是等边三角形,则BD=OB=OD=5,再根据垂径定理求出BE即可解决问题.【详解】(1)BC是O的直径,CAB=BDC=90AD平分CAB,CD=BD在直角BDC中,BC=10,CD2+BD2=BC2,BD=CD=5,(2)如图,连接OB,OD,OC,AD平分CAB,且CAB=60,DAB=CAB=30,DOB=2DAB=60又OB=OD,OBD是等边三角形,BD=OB=ODO的直径为10,则OB=5,BD=5,
26、AD平分CAB,ODBC,设垂足为E,BE=EC=OBsin60=,BC=5【点睛】本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型24、(1);(1)11. 【解析】(1)根据正切的定义求出OA,证明BAOBEC,根据相似三角形的性质计算;(1)求出直线AB的解析式,解方程组求出点D的坐标,根据三角形CDE的面积=三角形CBE的面积+三角形BED的面积计算即可【详解】解:(1)tanABO=,OB=4,OA=1,OE=1,BE=6,AOCE,BAOBEC,=,即=,解得,CE=3,即点C的坐标为(1,3),反比例函数的解析式为:;(1)设直线AB的解析式为:y=kx+b,则,解得,则直线AB的解析式为:,解得,当D的坐标为(6,1),三角形CDE的面积=三角形CBE的面积+三角形BED的面积=63+61=11【点睛】此题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤、求反比例函数与一次函数的交点的方法是解题的关键