新希望教育达标名校2022-2023学年中考一模数学试题含解析.doc

上传人:茅**** 文档编号:87993728 上传时间:2023-04-19 格式:DOC 页数:22 大小:1.32MB
返回 下载 相关 举报
新希望教育达标名校2022-2023学年中考一模数学试题含解析.doc_第1页
第1页 / 共22页
新希望教育达标名校2022-2023学年中考一模数学试题含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《新希望教育达标名校2022-2023学年中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《新希望教育达标名校2022-2023学年中考一模数学试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A60,的补角120,B90,的补角90,C100,的补角80,D两个角互为邻补角2已知ab=1,则a3a2b+b22ab的值为()A2B1C1D23某校

2、今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有() A180人 B117人 C215人 D257人4如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是ABCD5在平面直角坐标系中,将点P(2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是( )A(2,4)B(1,5)C(1,-3)D(-5,5)6已知二次函数yx24x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为()A1B2C3D47某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x3时,y18,那么当半径为6cm时,成本为(

3、)A18元B36元C54元D72元8下列叙述,错误的是( )A对角线互相垂直且相等的平行四边形是正方形B对角线互相垂直平分的四边形是菱形C对角线互相平分的四边形是平行四边形D对角线相等的四边形是矩形9函数与在同一坐标系中的大致图象是( )A、 B、 C、 D、10如图,AB是O的直径,点C,D,E在O上,若AED20,则BCD的度数为()A100B110C115D120二、填空题(共7小题,每小题3分,满分21分)11如图,ABC中,AB6,AC4,AD、AE分别是其角平分线和中线,过点C作CGAD于F,交AB于G,连接EF,则线段EF的长为_12已知关于x的一元二次方程mx2+5x+m22m

4、=0有一个根为0,则m=_13使有意义的的取值范围是_14如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于_15当关于x的一元二次方程ax2+bx+c0有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”如果关于x的一元二次方程x2+(m2)x2m0是“倍根方程”,那么m的值为_16如图,点A的坐标是(2,0),ABO是等边三角形,点B在第一象限,若反比例函数的图象经过点B,则k的值是_17抛物线yx2+bx+c的部分图象如图所示,则关于x的一元二次方程x2+bx+c0的解为_三、解答题

5、(共7小题,满分69分)18(10分)如图,点A是直线AM与O的交点,点B在O上,BDAM,垂足为D,BD与O交于点C,OC平分AOB,B60求证:AM是O的切线;若O的半径为4,求图中阴影部分的面积(结果保留和根号)19(5分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造如图,为体育馆改造的截面示意图已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角ABC为45,原坡脚B与场馆中央的运动区边界的安全距离BD为5米如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角EFG为

6、37若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由(参考数据:sin37,tan37)20(8分)(10分)如图,AB是O的直径,OD弦BC于点F,交O于点E,连结CE、AE、CD,若AEC=ODC(1)求证:直线CD为O的切线;(2)若AB=5,BC=4,求线段CD的长21(10分)在平面直角坐标系xOy中,一次函数的图象与y轴交于点,与反比例函数的图象交于点求反比例函数的表达式和一次函数表达式;若点C是y轴上一点,且,直接写出点C的坐标22(10分)如图,在平面直角坐标系中有RtABC,A=9

7、0,AB=AC,A(2,0),B(0,1)(1)求点C的坐标;(2)将ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B、C正好落在某反比例函数图象上请求出这个反比例函数和此时的直线BC的解析式(3)若把上一问中的反比例函数记为y1,点B,C所在的直线记为y2,请直接写出在第一象限内当y1y2时x的取值范围23(12分)如图,在平面直角坐标系中,直线经过点和,双曲线经过点B(1)求直线和双曲线的函数表达式;(2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0t12),连接BC,作BDBC交x轴于点D,连接CD,当点C在双曲线上时,求t的

8、值;在0t6范围内,BCD的大小如果发生变化,求tanBCD的变化范围;如果不发生变化,求tanBCD的值;当时,请直接写出t的值24(14分)如图,已知抛物线过点A(4,0),B(2,0),C(0,4)(1)求抛物线的解析式;(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且PAB=CAC1,求点P的横坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】熟记反证法的步骤,然后进行判断即可解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情

9、况;A、的补角,符合假命题的结论,故A错误;B、的补角=,符合假命题的结论,故B错误;C、的补角,与假命题结论相反,故C正确;D、由于无法说明两角具体的大小关系,故D错误故选C2、C【解析】先将前两项提公因式,然后把ab=1代入,化简后再与后两项结合进行分解因式,最后再代入计算【详解】a3a2b+b22ab=a2(ab)+b22ab=a2+b22ab=(ab)2=1故选C【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合3、B【解析】设男生为x人,则女生有65%x人,根据今年共毕业生297人列方程求解即可.【详解】设男生为x人,则女

10、生有65%x人,由题意得,x+65%x=297,解之得x=180,297-180=117人.故选B.【点睛】本题考查了一元一次方程的应用,根据题意找出等量关系列出方程是解答本题的关键.4、D【解析】由圆锥的俯视图可快速得出答案.【详解】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.【点睛】本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.5、B【解析】试题分析:由平移规律可得将点P(2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是(1,5),故选B考点:点的平移6、

11、B【解析】先将点A(1,0)代入yx24x+m,求出m的值,将点A(1,0)代入yx24x+m,得到x1+x24,x1x23,即可解答【详解】将点A(1,0)代入yx24x+m,得到m3,所以yx24x+3,与x轴交于两点,设A(x1,y1),b(x2,y2)x24x+30有两个不等的实数根,x1+x24,x1x23,AB|x1x2| 2;故选B【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.7、D【解析】设y与x之间的函数关系式为ykx2,由待定系数法就可以求出解析式,再求出x6时y的值即可得【详解】解:根据题意设ykx2,当x3时,y18,18k9,则k,ykx2x22x2

12、,当x6时,y23672,故选:D【点睛】本题考查了二次函数的应用,解答时求出函数的解析式是关键8、D【解析】【分析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案【详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;D. 对角线相等的平行四边形是矩形,故D选项错误,符合题意,故选D.【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关键9、D【解

13、析】试题分析:根据一次函数和反比例函数的性质,分k0和k0两种情况讨论:当k0时,一次函数图象过二、四、三象限,反比例函数中,k0,图象分布在一、三象限;当k0时,一次函数过一、三、四象限,反比例函数中,k0,图象分布在二、四象限故选D考点:一次函数和反比例函数的图象10、B【解析】连接AD,BD,由圆周角定理可得ABD20,ADB90,从而可求得BAD70,再由圆的内接四边形对角互补得到BCD=110.【详解】如下图,连接AD,BD,同弧所对的圆周角相等,ABD=AED20,AB为直径,ADB90,BAD90-20=70,BCD=180-70=110.故选B【点睛】本题考查圆中的角度计算,熟

14、练运用圆周角定理和内接四边形的性质是关键.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】在AGF和ACF中,AGFACF,AG=AC=4,GF=CF,则BG=ABAG=64=2.又BE=CE,EF是BCG的中位线,EF=BG=1.故答案是:1.12、1【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可【详解】关于x的一元二次方程mx1+5x+m11m=0有一个根为0,m11m=0且m0,解得,m=1,故答案是:1【点睛】本题考查了一元二次方程ax1+bx+c=0(a0)的解的定义解答该题时需注意二次项系数a0这一条

15、件13、【解析】根据二次根式的被开方数为非负数求解即可.【详解】由题意可得:,解得:.所以答案为.【点睛】本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.14、5【解析】根据题意得出球在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可【详解】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:255,故答案为5【点睛】本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度15、-1或-4【解析】分析: 设“倍根方程”的一个根为,则另一根为,由一元二次

16、方程根与系数的关系可得,由此可列出关于m的方程,解方程即可求得m的值.详解:由题意设“倍根方程”的一个根为,另一根为,则由一元二次方程根与系数的关系可得:,化简整理得:,解得 .故答案为:-1或-4.点睛:本题解题的关键是熟悉一元二次方程根与系数的关系:若一元二次方程的两根分别为,则.16、【解析】已知ABO是等边三角形,通过作高BC,利用等边三角形的性质可以求出OB和OC的长度;由于RtOBC中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC的长度,进而确定点B的坐标;将点B的坐标代入反比例函数的解析式中,即可求出k的值.【详解】过点B作BC垂直OA于C,点A的坐标是(2,0),AO

17、=2,ABO是等边三角形,OC=1,BC=,点B的坐标是把代入,得 故答案为【点睛】考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标;17、x11,x21【解析】直接观察图象,抛物线与x轴交于1,对称轴是x1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程x2+bx+c0的解【详解】解:观察图象可知,抛物线yx2+bx+c与x轴的一个交点为(1,0),对称轴为x1,抛物线与x轴的另一交点坐标为(1,0),一元二次方程x2+bx+c0的解为x11,x21故本题答案为:x11,x21【点睛】本题考查了二次函数与一元二次方程的关系一元二

18、次方程-x2+bx+c=0的解实质上是抛物线y=-x2+bx+c与x轴交点的横坐标的值三、解答题(共7小题,满分69分)18、 (1)见解析;(2)【解析】(1)根据题意,可得BOC的等边三角形,进而可得BCOBOC,根据角平分线的性质,可证得BDOA,根据BDM90,进而得到OAM90,即可得证;(2)连接AC,利用AOC是等边三角形,求得OAC60,可得CAD30,在直角三角形中,求出CD、AD的长,则S阴影S梯形OADCS扇形OAC即可得解【详解】(1)证明:B60,OBOC,BOC是等边三角形,1360,OC平分AOB,12,23,OABD,BDM90,OAM90,又OA为O的半径,A

19、M是O的切线(2)解:连接AC,360,OAOC,AOC是等边三角形,OAC60,CAD30,OCAC4,CD2,AD2 ,S阴影S梯形OADCS扇形OAC (4+2)2【点睛】本题主要考查切线的性质与判定、扇形的面积等,解题关键在于用整体减去部分的方法计算19、不满足安全要求,理由见解析【解析】在RtABC中,由ACB=90,AC=15m,ABC=45可求得BC=15m;在RtEGD中,由EGD=90,EG=15m,EFG=37,可解得GF=20m;通过已知条件可证得四边形EACG是矩形,从而可得GC=AE=2m;这样可解得:DF=GC+BC+BD-GF=2+15+5-20=22.5,由此可

20、知:“设计方案不满足安全要求”.【详解】解:施工方提供的设计方案不满足安全要求,理由如下:在RtABC中,AC=15m,ABC=45,BC=15m在RtEFG中,EG=15m,EFG=37,GF=20mEG=AC=15m,ACBC,EGBC,EGAC,四边形EGCA是矩形,GC=EA=2m,DF=GC+BC+BD-GF=2+15+5-20=22.5.施工方提供的设计方案不满足安全要求20、(1)证明见试题解析;(2)【解析】试题分析:(1)利用圆周角定理结合等腰三角形的性质得出OCF+DCB=90,即可得出答案;(2)利用圆周角定理得出ACB=90,利用相似三角形的判定与性质得出DC的长试题解

21、析:(1)连接OC,CEA=CBA,AEC=ODC,CBA=ODC,又CFD=BFO,DCB=BOF,CO=BO,OCF=B,B+BOF=90,OCF+DCB=90,直线CD为O的切线;(2)连接AC,AB是O的直径,ACB=90,DCO=ACB,又D=B,OCDACB,ACB=90,AB=5,BC=4,AC=3,即,解得;DC=考点:切线的判定21、(1)y=,y=-x+1;(2)C(0,3+1 )或C(0,1-3).【解析】(1)依据一次函数的图象与轴交于点,与反比例函数的图象交于点,即可得到反比例函数的表达式和一次函数表达式;(2)由,可得:,即可得到,再根据,可得或,即可得出点的坐标【

22、详解】(1)双曲线过,将代入,解得:所求反比例函数表达式为:点,点在直线上,所求一次函数表达式为(2)由,可得:,又,或,或,【点睛】本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题此题难度适中,注意掌握数形结合思想的应用22、(1)C(3,2);(2)y1=, y2=x+3; (3)3x1 【解析】分析:(1)过点C作CNx轴于点N,由已知条件证RtCANRtAOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3结合点C在第二象限即可得到点C的坐标;(2)设ABC向右平移了c个单位,则结合(1)可得点C,B的坐标分别为(3+c,2)、(c,1),

23、再设反比例函数的解析式为y1=,将点C,B的坐标代入所设解析式即可求得c的值,由此即可得到点C,B的坐标,这样用待定系数法即可求得两个函数的解析式了;(3)结合(2)中所得点C,B的坐标和图象即可得到本题所求答案.详解:(1)作CNx轴于点N,CAN=CAB=AOB=90,CAN+CAN=90,CAN+OAB=90,CAN=OAB,A(2,0)B(0,1),OB=1,AO=2,在RtCAN和RtAOB, ,RtCANRtAOB(AAS),AN=BO=1,CN=AO=2,NO=NA+AO=3,又点C在第二象限,C(3,2);(2)设ABC沿x轴的正方向平移c个单位,则C(3+c,2),则B(c,

24、1),设这个反比例函数的解析式为:y1=,又点C和B在该比例函数图象上,把点C和B的坐标分别代入y1=,得1+2c=c,解得c=1,即反比例函数解析式为y1=, 此时C(3,2),B(1,1),设直线BC的解析式y2=mx+n, , ,直线CB的解析式为y2=x+3; (3)由图象可知反比例函数y1和此时的直线BC的交点为C(3,2),B(1,1),若y1y2时,则3x1 点睛:本题是一道综合考查“全等三角形”、“一次函数”、“反比例函数”和“平移的性质”的综合题,解题的关键是:(1)通过作如图所示的辅助线,构造出全等三角形RtCAN和RtAOB;(2)利用平移的性质结合点B、C的坐标表达出点

25、C和B的坐标,由点C和B都在反比例函数的图象上列出方程,解方程可得点C和B的坐标,从而使问题得到解决.23、(1)直线的表达式为,双曲线的表达式为;(2);当时,的大小不发生变化,的值为;t的值为或【解析】(1)由点利用待定系数法可求出直线的表达式;再由直线的表达式求出点B的坐标,然后利用待定系数法即可求出双曲线的表达式;(2)先求出点C的横坐标,再将其代入双曲线的表达式求出点C的纵坐标,从而即可得出t的值;如图1(见解析),设直线AB交y轴于M,则,取CD的中点K,连接AK、BK利用直角三角形的性质证明A、D、B、C四点共圆,再根据圆周角定理可得,从而得出,即可解决问题;如图2(见解析),过

26、点B作于M,先求出点D与点M重合的临界位置时t的值,据此分和两种情况讨论:根据三点坐标求出的长,再利用三角形相似的判定定理与性质求出DM的长,最后在中,利用勾股定理即可得出答案【详解】(1)直线经过点和将点代入得解得故直线的表达式为将点代入直线的表达式得解得双曲线经过点,解得故双曲线的表达式为;(2)轴,点A的坐标为点C的横坐标为12将其代入双曲线的表达式得C的纵坐标为,即由题意得,解得故当点C在双曲线上时,t的值为;当时,的大小不发生变化,求解过程如下:若点D与点A重合由题意知,点C坐标为由两点距离公式得:由勾股定理得,即解得因此,在范围内,点D与点A不重合,且在点A左侧如图1,设直线AB交

27、y轴于M,取CD的中点K,连接AK、BK由(1)知,直线AB的表达式为令得,则,即点K为CD的中点,(直角三角形中,斜边上的中线等于斜边的一半)同理可得:A、D、B、C四点共圆,点K为圆心(圆周角定理);过点B作于M由题意和可知,点D在点A左侧,与点M重合是一个临界位置此时,四边形ACBD是矩形,则,即因此,分以下2种情况讨论:如图2,当时,过点C作于N又,即由勾股定理得即解得或(不符题设,舍去)当时,同理可得:解得或(不符题设,舍去)综上所述,t的值为或【点睛】本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似

28、三角形解决问题24、 (1)yx2x4(2)点M的坐标为(2,4)(3)或【解析】【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线解析式;(2) 连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小S四边形OAMCSOAMSOCM(m2)212. 当m2时,四边形OAMC面积最大,此时阴影部分面积最小; (3) 抛物线的对称轴为直线x1,点C与点C1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC12.先求AC4,CDC1D,AD43;设点P ,过P作PQ垂直于x轴,垂足为Q. 证PAQC

29、1AD,得,即,解得解得n,或n,或n4(舍去).【详解】(1)抛物线的解析式为y (x4)(x2)x2x4.(2)连接OM,设点M的坐标为. 由题意知,当四边形OAMC面积最大时,阴影部分的面积最小S四边形OAMCSOAMSOCM 4m 4 m24m8(m2)212.当m2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,4)(3)抛物线的对称轴为直线x1,点C与点C1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC12.OAOC,AOC90,CDC190,AC4,CDC1D,AD43,设点P ,过P作PQ垂直于x轴,垂足为Q.PABCAC1,AQPADC1,PAQC1AD,即 ,化简得 (82n),即3n26n2482n,或3n26n24(82n),解得n,或n,或n4(舍去),点P的横坐标为或.【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁