新希望教育达标名校2022-2023学年中考猜题数学试卷含解析.doc

上传人:茅**** 文档编号:87992874 上传时间:2023-04-19 格式:DOC 页数:21 大小:861.50KB
返回 下载 相关 举报
新希望教育达标名校2022-2023学年中考猜题数学试卷含解析.doc_第1页
第1页 / 共21页
新希望教育达标名校2022-2023学年中考猜题数学试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《新希望教育达标名校2022-2023学年中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《新希望教育达标名校2022-2023学年中考猜题数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,菱形ABCD中,B60,AB4,以AD为直径的O交CD于点E,则的长为()ABCD2如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有、的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()ABCD3肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000

2、071用科学记数法表示为()A7.1107B0.71106C7.1107D711084某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A22x=16(27x)B16x=22(27x)C216x=22(27x)D222x=16(27x)5如图,能判定EBAC的条件是( )AC=ABEBA=EBDCA=ABEDC=ABC6在实数0,4中,最小的数是( )A0BCD47如图,两张完全相同的正六边形纸片边长为重合在一起,下面一张保持不动,将上面一张纸片沿水

3、平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是A5:2B3:2C3:1D2:18如图,在ABC中,AB=AC,AD和CE是高,ACE=45,点F是AC的中点,AD与FE,CE分别交于点G、H,BCE=CAD,有下列结论:图中存在两个等腰直角三角形;AHECBE;BCAD=AE2;SABC=4SADF其中正确的个数有()A1B2C3D49小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()ABCD10已知一元二次方程ax2+ax40有一个根是2,则a值是()A2BC2D4二、填空题(本大题共6个小题,每小题3分,共18分)11如图,ABC中,

4、AB6,AC4,AD、AE分别是其角平分线和中线,过点C作CGAD于F,交AB于G,连接EF,则线段EF的长为_12如图,点A、B、C是O上的三点,且AOB是正三角形,则ACB的度数是 。13下列对于随机事件的概率的描述:抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别从中随机摸出一个球,恰好是白球的概率是0.2;测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率

5、是0.85其中合理的有_(只填写序号)14如图,在等腰直角三角形ABC中,C=90,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AB=4,则图中阴影部分的面积为_(结果保留)15若关于的不等式组无解, 则的取值范围是 _.16函数y=的自变量x的取值范围是_三、解答题(共8题,共72分)17(8分)已知:二次函数满足下列条件:抛物线y=ax2+bx与直线y=x只有一个交点;对于任意实数x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立(1)求二次函数y=ax2+bx的解析式;(2)若当-2xr(r0)时,恰有ty1.5r成立,求t和r的值18(8

6、分)如图,已知在中,是的平分线(1)作一个使它经过两点,且圆心在边上;(不写作法,保留作图痕迹)(2)判断直线与的位置关系,并说明理由19(8分)在平面直角坐标系中,抛物线y(xh)2+k的对称轴是直线x1若抛物线与x轴交于原点,求k的值;当1x0时,抛物线与x轴有且只有一个公共点,求k的取值范围20(8分)已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性AMB恒为等腰三角形,我们规定:当AMB为直角三角形时,就称AMB为该抛物线的“完美三角形”(1)如图2,求出抛物线的“完美三角形”斜边AB的长;抛物线与的“完美三角形”的斜边长的数量关系是

7、 ;(2)若抛物线的“完美三角形”的斜边长为4,求a的值;(3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值21(8分)抛物线yx2+bx+c经过点A、B、C,已知A(1,0),C(0,3)求抛物线的解析式;如图1,抛物线顶点为E,EFx轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若MNC90,请指出实数m的变化范围,并说明理由如图2,将抛物线平移,使其顶点E与原点O重合,直线ykx+2(k0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标22(10分)解方程组 23(12分)如图,

8、点O是ABC的边AB上一点,O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF求证:C=90;当BC=3,sinA=时,求AF的长24如图,在中,是边上的高线,平分交于点,经过,两点的交于点,交于点,为的直径(1)求证:是的切线;(2)当,时,求的半径参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】连接OE,由菱形的性质得出DB60,ADAB4,得出OAOD2,由等腰三角形的性质和三角形内角和定理求出DOE60,再由弧长公式即可得出答案【详解】解:连接OE,如图所示:四边形ABCD是菱形,DB60,ADAB4,OAOD2,ODOE,OEDD60,DOE18

9、026060, 的长;故选B【点睛】本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出DOE的度数是解决问题的关键2、A【解析】根据题意得到原几何体的主视图,结合主视图选择【详解】解:原几何体的主视图是:视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可故取走的正方体是故选A【点睛】本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.3、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】0.00000071的小数点向或移动7位得到7.1,所以0.000000

10、71用科学记数法表示为7.1107,故选C.【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4、D【解析】设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程222x=16(27-x),故选D.5、C【解析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线【详解】A、C=ABE不能判断出EBAC,故本选项错误; B、A=EBD不能判断出EBAC,故本选项错误;C、A=ABE,根据内错角相等,两直线平行,可

11、以得出EBAC,故本选项正确; D、C=ABC只能判断出AB=AC,不能判断出EBAC,故本选项错误故选C【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行6、D【解析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解【详解】正数大于0和一切负数,只需比较-和-1的大小,|-|-1|,最小的数是-1故选D【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小7、C【解析】求出正六边形和阴影

12、部分的面积即可解决问题;【详解】解:正六边形的面积,阴影部分的面积,空白部分与阴影部分面积之比是:1,故选C【点睛】本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型8、C【解析】图中有3个等腰直角三角形,故结论错误;根据ASA证明即可,结论正确;利用面积法证明即可,结论正确;利用三角形的中线的性质即可证明,结论正确.【详解】CEAB,ACE=45,ACE是等腰直角三角形,AF=CF,EF=AF=CF,AEF,EFC都是等腰直角三角形,图中共有3个等腰直角三角形,故错误,AHE+EAH=90,DHC+BCE=90,AHE=DHC,EAH=B

13、CE,AE=EC,AEH=CEB=90,AHECBE,故正确,SABC=BCAD=ABCE,AB=AC=AE,AE=CE,BCAD=CE2,故正确,AB=AC,ADBC,BD=DC,SABC=2SADC,AF=FC,SADC=2SADF,SABC=4SADF故选C【点睛】本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题9、A【解析】密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),当他忘记了末位数字时,要一次能打开的概率是.故选A.10、C【解析】分析

14、:将x=2代入方程即可求出a的值详解:将x=2代入可得:4a2a4=0, 解得:a=2,故选C点睛:本题主要考查的是解一元一次方程,属于基础题型解方程的一般方法的掌握是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】在AGF和ACF中,AGFACF,AG=AC=4,GF=CF,则BG=ABAG=64=2.又BE=CE,EF是BCG的中位线,EF=BG=1.故答案是:1.12、30【解析】试题分析:圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.AOB是正三角形AOB=60ACB=30.考点:圆周角定理点评:本题属于基础应用题,只需学生熟练掌握圆周角

15、定理,即可完成.13、【解析】大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.根据事件的类型及概率的意义找到正确选项即可.【详解】解:抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,大约有50次“正面朝上”,此结论错误;一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别从中随机摸出一个球,恰好是白球的概率是,此结论正确;测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85,此结论正确;故答案为:【点睛】本题考查

16、了概率的意义,解题的关键在于掌握计算公式.14、4【解析】由在等腰直角三角形ABC中,C=90,AB=4,可求得直角边AC与BC的长,继而求得ABC的面积,又由扇形的面积公式求得扇形EAD和扇形FBD的面积,继而求得答案【详解】解:在等腰直角三角形ABC中,C=90,AB=4,AC=BC=ABsin45=AB=2,SABC=ACBC=4,点D为AB的中点,AD=BD=AB=2,S扇形EAD=S扇形FBD=22=,S阴影=SABCS扇形EADS扇形FBD=4故答案为:4【点睛】此题考查了等腰直角三角形的性质以及扇形的面积注意S阴影=SABCS扇形EADS扇形FBD15、【解析】首先解每个不等式,

17、然后根据不等式无解,即两个不等式的解集没有公共解即可求得【详解】,解得:xa+3,解得:x1根据题意得:a+31,解得:a-2故答案是:a-2【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤.16、x且x1【解析】分析:根据被开方数大于等于0,分母不等于0列式求解即可详解:根据题意得2x+10,x-10,解得x-且x1故答案为x-且x1点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单三、解答题(共8题,共72分)17、(1)y=x2+x;(2)t=-4,r=-1.【解析】(1)由联立方程组,

18、根据抛物线y=ax2+bx与直线y=x只有一个交点可以求出b的值,由可得对称轴为x=1,从而得a的值,进而得出结论;(2)进行分类讨论,分别求出t和r的值.【详解】(1)y=ax2+bx和y=x联立得:ax2+(b+1)x=0,=0得:(b-1)2=0,得b=1,对称轴为=1,=1,a=,y=x2+x.(2)因为y=x2+x=(x-1)2+,所以顶点(1,)当-2r1,且r0时,当x=r时,y最大=r2+r=1.5r,得r=-1, 当x=-2时,y最小=-4,所以,这时t=-4,r=-1.当r1时,y最大=,所以1.5r=, 所以r=,不合题意,舍去,综上可得,t=-4,r=-1.【点睛】本题

19、考查二次函数综合题,解题的关键是理解题意,利用二次函数的性质解决问题18、(1)见解析;(2)与相切,理由见解析【解析】(1)作出AD的垂直平分线,交AB于点O,进而利用AO为半径求出即可;(2)利用半径相等结合角平分线的性质得出ODAC,进而求出ODBC,进而得出答案【详解】(1)分别以为圆心,大于的长为半径作弧,两弧相交于点和,作直线,与相交于点,以为圆心,为半径作圆,如图即为所作;(2)与相切,理由如下:连接OD,为半径,是等腰三角形,平分,为半径,与相切【点睛】本题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的判定方法是解题关键19、(1)k1;(2)当4k1时,

20、抛物线与x轴有且只有一个公共点【解析】(1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;(2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当1x2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.【详解】解:(1)抛物线y(xh)2+k的对称轴是直线x1,h1,把原点坐标代入y(x1)2+k,得,(21)2+k2,解得k1;(2)抛物线y(x1)2+k与x轴有公共点,对于方程(x1)2+k2,判别式b24ac4k2,k2当x1时,y4+k;当x2时,y1+k,抛物线的对称轴为x1,且当1x2时,抛物线与x轴有且只有一个公共点,4+k

21、2且1+k2,解得4k1,综上,当4k1时,抛物线与x轴有且只有一个公共点【点睛】抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.20、(1)AB=2;相等;(2)a=;(3), 【解析】(1)过点B作BNx轴于N,由题意可知AMB为等腰直角三角形,设出点B的坐标为(n,n),根据二次函数得出n的值,然后得出AB的值,因为抛物线y=x2+1与y=x2的形状相同,所以抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;(2)根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B的坐标,得出a的值;根据最大值得出mn4m1=0,根据抛物线的完美三角

22、形的斜边长为n得出点B的坐标,然后代入抛物线求出m和n的值.(3)根据的最大值为-1,得到化简得mn-4m-1=0,抛物线的“完美三角形”斜边长为n,所以抛物线2的“完美三角形”斜边长为n,得出B点坐标,代入可得mn关系式,即可求出m、n的值.【详解】(1)过点B作BNx轴于N,由题意可知AMB为等腰直角三角形,ABx轴,易证MN=BN,设B点坐标为(n,-n),代入抛物线,得,(舍去),抛物线的“完美三角形”的斜边相等;(2)抛物线与抛物线的形状相同,抛物线与抛物线的“完美三角形”全等,抛物线的“完美三角形”斜边的长为4,抛物线的“完美三角形”斜边的长为4,B点坐标为(2,2)或(2,-2)

23、,(3) 的最大值为-1, , ,抛物线的“完美三角形”斜边长为n,抛物线的“完美三角形”斜边长为n,B点坐标为,代入抛物线,得, (不合题意舍去),21、(1)yx22x3;(2);(3)当k发生改变时,直线QH过定点,定点坐标为(0,2)【解析】(1)把点A(1,0),C(0,3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;(2)作CHEF于H,设N的坐标为(1,n),证明RtNCHMNF,可得mn2+3n+1,因为4n0,即可得出m的取值范围;(3)设点P(x1,y1),Q(x2,y2),则点H(x1,y1),设直线HQ表达式为yax+t,用待定系数法和韦达定理可求得ax2x1,

24、t2,即可得出直线QH过定点(0,2)【详解】解:(1)抛物线yx2+bx+c经过点A、C,把点A(1,0),C(0,3)代入,得:,解得,抛物线的解析式为yx22x3;(2)如图,作CHEF于H,yx22x3(x1)24,抛物线的顶点坐标E(1,4),设N的坐标为(1,n),4n0MNC90,CNH+MNF90,又CNH+NCH90,NCHMNF,又NHCMFN90,RtNCHMNF,即解得:mn2+3n+1,当时,m最小值为;当n4时,m有最大值,m的最大值1612+11m的取值范围是(3)设点P(x1,y1),Q(x2,y2),过点P作x轴平行线交抛物线于点H,H(x1,y1),ykx+

25、2,yx2,消去y得,x2kx20,x1+x2k,x1x22,设直线HQ表达式为yax+t,将点Q(x2,y2),H(x1,y1)代入,得,y2y1a(x1+x2),即k(x2x1)ka,ax2x1,( x2x1)x2+t,t2,直线HQ表达式为y( x2x1)x2,当k发生改变时,直线QH过定点,定点坐标为(0,2)【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键22、【解析】将3,再联立消未知数即可计算.【详解】解:得: +得: 把代入得方程组的解为【点睛】本题考查二

26、元一次方程组解法,关键是掌握消元法.23、(1)见解析(2)【解析】(1)连接OE,BE,因为DE=EF,所以=,从而易证OEB=DBE,所以OEBC,从可证明BCAC;(2)设O的半径为r,则AO=5r,在RtAOE中,sinA=从而可求出r的值【详解】解:(1)连接OE,BE,DE=EF,=OBE=DBEOE=OB,OEB=OBEOEB=DBE,OEBCO与边AC相切于点E,OEACBCACC=90(2)在ABC,C=90,BC=3,sinA=,AB=5,设O的半径为r,则AO=5r,在RtAOE中,sinA= 【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识24、(1)见解析;(2)的半径是.【解析】(1)连结,易证,由于是边上的高线,从而可知,所以是的切线(2)由于,从而可知,由,可知:,易证,所以,再证明,所以,从而可求出.【详解】解:(1)连结平分,又,是边上的高线,是的切线.(2),是中点,又,在中,而,的半径是.【点睛】本题考查圆的综合问题,涉及锐角三角函数,相似三角形的判定与性质,等腰三角形的性质等知识,综合程度较高,需要学生综合运用知识的能力

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁