《广东省茂名市电白区2022-2023学年中考数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《广东省茂名市电白区2022-2023学年中考数学模拟试题含解析.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,将ABC绕点C旋转60得到ABC,已知AC=6,BC=4,则线段AB扫过的图形面积为()ABC6D以上答案都不对2如图,在矩形ABCD中,连接BD,点O是BD
2、的中点,若点M 在AD边上,连接MO并延长交BC边于点M,连接MB,DM则图中的全等三角形共有( )A3对B4对C5对D6对3下列条件中不能判定三角形全等的是( )A两角和其中一角的对边对应相等B三条边对应相等C两边和它们的夹角对应相等D三个角对应相等4如图,已知直线AD是O的切线,点A为切点,OD交O于点B,点C在O上,且ODA=36,则ACB的度数为()A54 B36 C30 D275为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是()A极差是3.5B众数是1
3、.5C中位数是3D平均数是36如图,ABCD,1=45,3=80,则2的度数为()A30B35C40D457小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则A圆锥形冰淇淋纸套的底面半径为4cmB圆锥形冰淇淋纸套的底面半径为6cmC圆锥形冰淇淋纸套的高为D圆锥形冰淇淋纸套的高为8分别写有数字0,1,2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )ABCD9如图,O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是( )ADAC=DBC=30BOABC,OB
4、ACCAB与OC互相垂直DAB与OC互相平分10如图: 在中,平分,平分,且交于,若,则等于( )A75B100 C120 D125二、填空题(共7小题,每小题3分,满分21分)11算术平方根等于本身的实数是_.12在中,若,则的度数是_13如图,在正方形ABCD中,AD=5,点E,F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为_14观察下列的“蜂窝图”按照它呈现的规律第n个图案中的“”的个数是_(用含n的代数式表示)15分解因式:2m2-8=_16如图,在直角坐标系中,A的圆心A的坐标为(1,0),半径为1,点P为直线y=x+3上的动点,过点P作A的切线,切点为Q
5、,则切线长PQ的最小值是_17如果关于x的方程(m为常数)有两个相等实数根,那么m_三、解答题(共7小题,满分69分)18(10分)计算下列各题:(1)tan45sin60cos30;(2)sin230+sin45tan3019(5分)解不等式组: ,并写出它的所有整数解20(8分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABC
6、D,且点B和点D均在小正方形的顶点上21(10分)如图,将等边ABC绕点C顺时针旋转90得到EFC,ACE的平分线CD交EF于点D,连接AD、AF求CFA度数;求证:ADBC22(10分)一辆汽车,新车购买价30万元,第一年使用后折旧,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值为万元,求这辆车第二、三年的年折旧率.23(12分)已知:如图,在平行四边形中,的平分线交于点,过点作的垂线交于点,交延长线于点,连接,.求证:; 若, 求的长.24(14分)先化简,再求值,其中x=1参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
7、1、D【解析】从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积【详解】阴影面积=故选D【点睛】本题的关键是理解出,线段AB扫过的图形面积为一个环形2、D【解析】根据矩形的对边平行且相等及其对称性,即可写出图中的全等三角形的对数.【详解】图中图中的全等三角形有ABMCDM,ABDCDB, OBMODM,OBMODM, MBMMDM, DBMBDM,故选D.【点睛】此题主要考查矩形的性质及全等三角形的判定,解题的关键是熟知矩形的对称性.3、D【解析】解:A、符合AAS,能判定三角形全等;B、符合SSS,能
8、判定三角形全等;C、符合SAS,能判定三角形全等;D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;故选D4、D【解析】解:AD为圆O的切线,ADOA,即OAD=90,ODA=36,AOD=54,AOD与ACB都对,ACB=AOD=27故选D5、C【解析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【详解】A.极差为51.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为(2.5+3)=2.75,此选项错误;D.平均数为:(1.5+1.5+2+2.5+3+4+
9、4.5+5)=3,此选项正确.故选C.【点睛】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.6、B【解析】分析:根据平行线的性质和三角形的外角性质解答即可详解:如图,ABCD,1=45,4=1=45,3=80,2=3-4=80-45=35,故选B点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答7、C【解析】根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高【详解】解:半径为12cm,圆心角为的扇形弧长是:,设圆锥的底面半径是rcm,则,解
10、得:即这个圆锥形冰淇淋纸套的底面半径是2cm圆锥形冰淇淋纸套的高为故选:C【点睛】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:圆锥的母线长等于侧面展开图的扇形半径;圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键8、B【解析】试题分析:根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,1,2,1,3中任抽一张,那么抽到负数的概率是.故选B.考点:概率.9、C【解析】(1)DAC=DBC=30,AOC=BOC=60,又OA=OC=OB,AOC和OBC都是等边三角形
11、,OA=AC=OC=BC=OB,四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;(2)OABC,OBAC,四边形OACB是平行四边形,又OA=OB,四边形OACB是菱形,即B选项中的条件可以判定四边形OACB是菱形;(3)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB是菱形;(4)AB与OC互相平分,四边形OACB是平行四边形,又OA=OB,四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.故选C.10、B【解析】根据角平分线的定义推出ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求
12、出CE2+CF2的值【详解】解:CE平分ACB,CF平分ACD,ACE=ACB,ACF=ACD,即ECF=(ACB+ACD)=90,EFC为直角三角形,又EFBC,CE平分ACB,CF平分ACD,ECB=MEC=ECM,DCF=CFM=MCF,CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=1故选:B【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出ECF为直角三角形二、填空题(共7小题,每小题3分,满分
13、21分)11、0或1【解析】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身12、【解析】先根据非负数的性质求出,再由特殊角的三角函数值求出与的值,根据三角形内角和定理即可得出结论【详解】在中,故答案为:【点睛】本题考查了非负数的性质以及特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.13、【解析】分析:延长AE交DF于G,再根据全等三角形的判定得出AGD与ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出
14、GF=1,再根据勾股定理得出EF的长详解:延长AE交DF于G,如图, AB=5,AE=3,BE=4,ABE是直角三角形,同理可得DFC是直角三角形,可得AGD是直角三角形,ABE+BAE=DAE+BAE,GAD=EBA,同理可得:ADG=BAE在AGD和BAE中,AGDBAE(ASA),AG=BE=4,DG=AE=3,EG=43=1,同理可得:GF=1,EF= 故答案为 点睛:本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算14、3n+1【解析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可
15、得出规律【详解】解:由题意可知:每1个都比前一个多出了3个“”,第n个图案中共有“”为:4+3(n1)3n+1故答案为:3n+1.【点睛】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型15、2(m+2)(m-2)【解析】先提取公因式2,再对余下的多项式利用平方差公式继续分解因式【详解】2m2-8,=2(m2-4),=2(m+2)(m-2)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解16、2 【解析】分析:因为BP,AB的长不变,当PA最小
16、时切线长PB最小,所以点P是过点A向直线l所作垂线的垂足,利用APCDOC求出AP的长即可求解.详解:如图,作AP直线yx3,垂足为P,此时切线长PB最小,设直线与x轴,y轴分别交于D,C.A的坐标为(1,0),D(0,3),C(4,0),OD3,AC5,DC5,ACDC,在APC与DOC中,APCCOD90,ACPDCO,ACDC,APCDOC,APOD3,PB2故答案为2.点睛:本题考查了切线的性质,全等三角形的判定性质,勾股定理及垂线段最短,因为直角三角形中的三边长满足勾股定理,所以当其中的一边的长不变时,即可根据另一边的取值情况确定第三边的最大值或最小值.17、1【解析】析:本题需先根
17、据已知条件列出关于m的等式,即可求出m的值解答:解:x的方程x2-2x+m=0(m为常数)有两个相等实数根=b2-4ac=(-2)2-41?m=04-4m=0m=1故答案为1三、解答题(共7小题,满分69分)18、(1);(2).【解析】(1)原式=1=1=;(2)原式=+=【点睛】本题考查特殊角的三角函数值,熟练掌握每个特殊角的三角函数值是解此题的关键.19、2,1,0,1,2;【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可【详解】解:解不等式(1),得解不等式(2),得x2 所以不等式组的解集:3x2 它的整数解为:2,1,0,1,22
18、0、(1)作图见解析;(2)作图见解析.【解析】试题分析:(1)通过数格子可得到点P关于AC的对称点,再直接利用勾股定理可得到周长;(2)利用网格结合矩形的性质以及勾股定理可画出矩形.试题解析:(1)如图1所示:四边形AQCP即为所求,它的周长为:;(2)如图2所示:四边形ABCD即为所求考点:1轴对称;2勾股定理.21、(1)75(2)见解析【解析】(1)由等边三角形的性质可得ACB60,BCAC,由旋转的性质可得CFBC,BCF90,由等腰三角形的性质可求解;(2)由“SAS”可证ECDACD,可得DACE60ACB,即可证ADBC【详解】解:(1)ABC是等边三角形ACB60,BCAC等
19、边ABC绕点C顺时针旋转90得到EFCCFBC,BCF90,ACCECFACBCF90,ACB60ACFBCFACB30CFA(180ACF)75(2)ABC和EFC是等边三角形ACB60,E60CD平分ACEACDECDACDECD,CDCD,CACE,ECDACD(SAS)DACE60DACACBADBC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键22、这辆车第二、三年的年折旧率为.【解析】设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为30(1-20%)(1-x)元,第三年折旧后的而价格为30(1-20%)(1-x)
20、2元,与第三年折旧后的价格为17.34万元建立方程求出其解即可【详解】设这辆车第二、三年的年折旧率为,依题意,得 整理得, 解得,.因为折旧率不可能大于1,所以不合题意,舍去.所以 答:这辆车第二、三年的年折旧率为.【点睛】本题是一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键23、(1)详见解析;(2)【解析】(1)根据题意平分可得,从而证明即可解答(2)由(1)可知,再根据四边形是平行四边形可得,过点作延长线于点,再根据勾股定理即可解答【详解】(1)证明:平分又又(2)四边形是平行四边形, 为等边三角形过点作延长线于点.在中,【点睛】此题考查三角形全等的判定与性质,勾股定理,平行四边形的性质,解题关键在于作好辅助线24、1【解析】先根据分式的运算法则进行化简,再代入求值.【详解】解:原式=()=;将x=1代入原式=1【点睛】分式的化简求值