广东省茂名市电白区2022-2023学年中考数学模试卷含解析.doc

上传人:lil****205 文档编号:87992937 上传时间:2023-04-19 格式:DOC 页数:17 大小:781.50KB
返回 下载 相关 举报
广东省茂名市电白区2022-2023学年中考数学模试卷含解析.doc_第1页
第1页 / 共17页
广东省茂名市电白区2022-2023学年中考数学模试卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《广东省茂名市电白区2022-2023学年中考数学模试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省茂名市电白区2022-2023学年中考数学模试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,已知,那么下列结论正确的是( )ABCD2我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是()ABCD3下面的图形是轴对称图

2、形,又是中心对称图形的有()A1个B2个C3个D4个4八边形的内角和为()A180B360C1 080D1 4405已知一个多边形的内角和是外角和的2倍,则此多边形的边数为 ( )A6B7C8D96在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A27B51C69D727下列计算正确的是()A3a2a1Ba2+a5a7C(ab)3ab3Da2a4a68若O的半径为5cm,OA=4cm,则点A与O的位置关系是( )A点A在O内B点A在O上C点A在O外D内含9下列命题中假命题是( )A正六边形的外角和等于B位似图形必定相似C样本方差越大,数据波动越小D

3、方程无实数根10若抛物线yx2(m3)xm能与x轴交,则两交点间的距离最值是( )A最大值2,B最小值2C最大值2D最小值2二、填空题(本大题共6个小题,每小题3分,共18分)11将一个含45角的三角板,如图摆放在平面直角坐标系中,将其绕点顺时针旋转75,点的对应点恰好落在轴上,若点的坐标为,则点的坐标为_12=_13等腰ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为_秒14若关于x的方程的解是正数,则m的取值范围是_15双曲线、在第一象限的图像如图,过y2上的任意一点A,作x轴的平

4、行线交y1于B,交y轴于C,过A作x轴的垂线交y1于D,交x轴于E,连结BD、CE,则 16已知,在RtABC中,C=90,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=31将CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是ABC的平分线,此时线段CD的长是_.三、解答题(共8题,共72分)17(8分)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF求证:AF=CE18(8分)如图,在RtABC中,C=90,以AC为直径作O,交AB于D,过点O作OEAB,交BC于E(1)求证:ED为O的切线;(2)若O的半径为3

5、,ED=4,EO的延长线交O于F,连DF、AF,求ADF的面积19(8分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元 (进价、售价均保持不变,利润销售收入进货成本)(1)求A,B两种型号的电风扇的销售单价(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由20(8分)如图

6、1,已知ABC是等腰直角三角形,BAC90,点D是BC的中点作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG试猜想线段BG和AE的数量关系是_;将正方形DEFG绕点D逆时针方向旋转(0360),判断(1)中的结论是否仍然成立?请利用图2证明你的结论;若BCDE4,当AE取最大值时,求AF的值21(8分)如图,一次函数y=2x4的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标为1(1)求反比例函数的解析式;(2)点P是x轴上一动点,ABP的面积为8,求P点坐标22(10分)如图,点是线段的中点,求证:23(12分)如图,在由边长为1个单位长度的小正方形组成的1010网格中

7、,已知点O,A,B均为网格线的交点.在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;将线段绕点逆时针旋转90得到线段.画出线段;以为顶点的四边形的面积是 个平方单位.24已知,抛物线的顶点为,它与轴交于点,(点在点左侧)()求点、点的坐标;()将这个抛物线的图象沿轴翻折,得到一个新抛物线,这个新抛物线与直线交于点求证:点是这个新抛物线与直线的唯一交点;将新抛物线位于轴上方的部分记为,将图象以每秒个单位的速度向右平移,同时也将直线以每秒个单位的速度向上平移,记运动时间为,请直接写出图象与直线有公共点时运动时间的范围参考答案一、选择题(共

8、10小题,每小题3分,共30分)1、A【解析】已知ABCDEF,根据平行线分线段成比例定理,对各项进行分析即可【详解】ABCDEF,故选A【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案2、C【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到矩形的图形【详解】A、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三

9、角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误故选C【点睛】本题重点考查了三视图的定义考查学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答3、B【解析】根据轴对称图形和中心对称图形的定义对各个图形进行逐一分析即可【详解】解:第一个图形是轴对称图形,但不是中心对称图形;第二个图形是中心对称图形,但不是轴对称图形;第三个图形既是轴对称图形,又是中心对称图形;第四个图形即是轴对称图形,又是中心对称图形;既是轴对称图形,又是中心对称图形的有两个,故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形

10、两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180后两部分重合4、C【解析】试题分析:根据n边形的内角和公式(n-2)180 可得八边形的内角和为(8-2)180=1080,故答案选C.考点:n边形的内角和公式.5、A【解析】试题分析:根据多边形的外角和是310,即可求得多边形的内角的度数为720,依据多边形的内角和公式列方程即可得(n2)180=720,解得:n=1故选A考点:多边形的内角和定理以及多边形的外角和定理6、D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+1列出三个数的和的方程,再根据选项解出x,看是否存在解:设第一个数为x,则第二个数为x+7,第三个数为x

11、+1故三个数的和为x+x+7+x+1=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=2故任意圈出一竖列上相邻的三个数的和不可能是3故选D“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解7、D【解析】根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答.【详解】3a2aa,选项A不正确;a2+a5a7,选项B不正确;(ab)3a3b3,选项C不正确;a2a4a6,选项D正确故选D【点睛】本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟

12、练运用法则是解决问题的关键.8、A【解析】直接利用点与圆的位置关系进而得出答案【详解】解:O的半径为5cm,OA=4cm,点A与O的位置关系是:点A在O内故选A【点睛】此题主要考查了点与圆的位置关系,正确点P在圆外dr,点P在圆上d=r,点P在圆内dr是解题关键9、C【解析】试题解析:A、正六边形的外角和等于360,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C考点:命题与定理10、D【解析】设抛物线与x轴的两交点间的横坐标分别为:x1,x2,由韦达定理得:x1+x2=m-3,x1x2=-m,则两交点间的

13、距离d=|x1-x2|= ,m=1时,dmin=2故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】先求得ACO=60,得出OAC=30,求得AC=2OC=2,解等腰直角三角形求得直角边为,从而求出B的坐标【详解】解:ACB=45,BCB=75,ACB=120,ACO=60,OAC=30,AC=2OC,点C的坐标为(1,0),OC=1,AC=2OC=2,ABC是等腰直角三角形,B点的坐标为【点睛】此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题12、13【解析】2+94+613.故答案是:13

14、.13、7秒或25秒【解析】考点:勾股定理;等腰三角形的性质专题:动点型;分类讨论分析:根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:PAACPAAB,从而可得到运动的时间解答:解:如图,作ADBC,交BC于点D,BC=8cm,BD=CD=BC=4cm,AD=3,分两种情况:当点P运动t秒后有PAAC时,AP2=PD2+AD2=PC2-AC2,PD2+AD2=PC2-AC2,PD2+32=(PD+4)2-52PD=2.25,BP=4-2.25=1.75=0.25t,t=7秒,当点P运动t秒后有PAAB时,同理可证得PD=2.25,BP=4+2.25=

15、6.25=0.25t,t=25秒,点P运动的时间为7秒或25秒点评:本题利用了等腰三角形的性质和勾股定理求解14、m0且x-20,则有4-m 0且4-m-20,解得:m4且m2.15、【解析】设A点的横坐标为a,把x=a代入得,则点A的坐标为(a,)ACy轴,AEx轴,C点坐标为(0,),B点的纵坐标为,E点坐标为(a,0),D点的横坐标为aB点、D点在上,当y=时,x=;当x=a,y=B点坐标为(,),D点坐标为(a,)AB=a=,AC=a,AD=,AE=AB=AC,AD=AE又BAD=CAD,BADCAD16、2【解析】分析:设CD=3x,则CE=1x,BE=121x,依据EBF=EFB,

16、可得EF=BE=121x,由旋转可得DF=CD=3x,再根据RtDCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+121x)2,进而得出CD=2详解:如图所示,设CD=3x,则CE=1x,BE=121x=,DCE=ACB=90,ACBDCE,DEC=ABC,ABDE,ABF=BFE又BF平分ABC,ABF=CBF,EBF=EFB,EF=BE=121x,由旋转可得DF=CD=3x在RtDCE中,CD2+CE2=DE2,(3x)2+(1x)2=(3x+121x)2,解得x1=2,x2=3(舍去),CD=23=2故答案为2 点睛:本题考查了相似三角形的判定与性质,勾股定理以及

17、旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等三、解答题(共8题,共72分)17、证明见解析.【解析】试题分析:根据矩形的性质得出求出根据平行四边形的判定得出四边形是平行四边形,即可得出答案.试题解析:四边形ABCD是矩形, 四边形是平行四边形, 点睛:平行四边形的判定:有一组对边平行且相等的四边形是平行四边形.18、(1)见解析;(2)ADF的面积是【解析】试题分析:(1)连接OD,CD,求出BDC=90,根据OEAB和OA=OC求出BE=CE,推出DE=CE,根据SSS证ECOEDO,推出EDO=ACB=90即可;(2)过

18、O作OMAB于M,过F作FNAB于N,求出OM=FN,求出BC、AC、AB的值,根据sinBAC,求出OM,根据cosBAC,求出AM,根据垂径定理求出AD,代入三角形的面积公式求出即可试题解析:(1)证明:连接OD,CD,AC是O的直径,CDA=90=BDC,OEAB,CO=AO,BE=CE,DE=CE,在ECO和EDO中 ,ECOEDO,EDO=ACB=90,即ODDE,OD过圆心O,ED为O的切线(2)过O作OMAB于M,过F作FNAB于N,则OMFN,OMN=90,OEAB,四边形OMFN是矩形,FN=OM,DE=4,OC=3,由勾股定理得:OE=5,AC=2OC=6,OEAB,OEC

19、ABC,AB=10,在RtBCA中,由勾股定理得:BC=8,sinBAC=,即 ,OM=FN,cosBAC=,AM= 由垂径定理得:AD=2AM=,即ADF的面积是ADFN=答:ADF的面积是【点睛】考查了切线的性质和判定,勾股定理,三角形的面积,垂径定理,直角三角形的斜边上中线性质,全等三角形的性质和判定等知识点的运用,通过做此题培养了学生的分析问题和解决问题的能力19、 (1) A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标【解析】(1)设A、B两种型号电风扇的销售单价分别

20、为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标【详解】(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台依题意,得解得答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30a)台依题意,得200a170(30a)5400,解得a10.答:A种型号的

21、电风扇最多能采购10台(3)依题意,有(250200)a(210170)(30a)1400,解得a20.a10,在(2)的条件下超市不能实现利润为1400元的目标【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解20、(1)BG=AE(2)成立BG=AE证明见解析.AF=【解析】(1)由等腰直角三角形的性质及正方形的性质就可以得出ADEBDG就可以得出结论;(2)如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出ADEBDG就可以得出结论;由可知BG=AE,当BG取得最大值时,AE取得最

22、大值,由勾股定理就可以得出结论【详解】(1)BG=AE.理由:如图1,ABC是等腰直角三角形,BAC=90,点D是BC的中点,ADBC,BD=CD,ADB=ADC=90.四边形DEFG是正方形,DE=DG.在BDG和ADE中,BD=AD,BDG=ADE,GD=ED,ADEBDG(SAS),BG=AE.故答案为BG=AE;(2)成立BG=AE.理由:如图2,连接AD,在RtBAC中,D为斜边BC中点,AD=BD,ADBC,ADG+GDB=90.四边形EFGD为正方形,DE=DG,且GDE=90,ADG+ADE=90,BDG=ADE.在BDG和ADE中,BD=AD,BDG=ADE,GD=ED,BD

23、GADE(SAS),BG=AE;BG=AE,当BG取得最大值时,AE取得最大值如图3,当旋转角为270时,BG=AE.BC=DE=4,BG=2+4=6.AE=6.在RtAEF中,由勾股定理,得AF= =,AF=2 .【点睛】本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.21、(1)y=;(2)(4,0)或(0,0)【解析】(1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用AB

24、P的面积为8,可求P点坐标.【详解】解:(1)把x=1代入y=2x4,可得y=214=2,A(1,2),把(1,2)代入y=,可得k=12=6,反比例函数的解析式为y=;(2)根据题意可得:2x4=,解得x1=1,x2=1,把x2=1,代入y=2x4,可得y=6,点B的坐标为(1,6)设直线AB与x轴交于点C,y=2x4中,令y=0,则x=2,即C(2,0),设P点坐标为(x,0),则|x2|(2+6)=8,解得x=4或0,点P的坐标为(4,0)或(0,0)【点睛】本题主要考查用待定系数法求一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。22、详见解析【解析】利用 证明 即

25、可解决问题【详解】证明:是线段的中点在和中,【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等的条件,属于中考常考题型23、(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的面积为

26、:=20,故答案为20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.24、(1)B(3,0),C(1,0);(2)见解析;t6.【解析】(1)根据抛物线的顶点坐标列方程,即可求得抛物线的解析式,令y0,即可得解;(2)根据翻折的性质写出翻折后的抛物线的解析式,与直线方程联立,求得交点坐标即可;当t0时,直线与抛物线只有一个交点N(3,6)(相切),此时直线与G无交点;第一个交点出现时,直线过点C(1 t,0),代入直线解析式:y4x6t,解得t;最后一个交点是B(3t,0),代入y4x6t,解得t6,所以t6.【详解】(1)因为抛物线的顶点为M(1,2),所以对称轴为x1,可得:,解得:a,c,所以抛物线解析式为yx2x,令y0,解得x1或x3,所以B(3,0),C(1,0);(2)翻折后的解析式为yx2x,与直线y4x6联立可得:x23x0,解得:x1x23,所以该一元二次方程只有一个根,所以点N(3,6)是唯一的交点;t6.【点睛】本题主要考查了图形运动,解本题的要点在于熟知一元二次方程的相关知识点.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁