《2022-2023学年福建省建阳市达标名校中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年福建省建阳市达标名校中考猜题数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知一元二次方程2x2+2x1=0的两个根为x1,x2,且x1x2,下列结论正确的是()Ax1+x2=1Bx1x2=1C|x1|x2|Dx12+x1=2若m,n是一元二次方程x22x1=0的两个不同实数根,则代数式m2m+n的值是()A1B3C3D13若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )AB1CD4设a,b是常数,不等式的解集为,则关于x的不等式的解集是( )ABCD5已知二次函数yax2+bx+c的图象如图所示,有以下结论:a+b+c0;ab+c1;abc0;4a2b+c0;ca1,
3、其中所有正确结论的序号是()ABCD6如图,在平面直角坐标系中,已知点B、C的坐标分别为点B(3,1)、C(0,1),若将ABC绕点C沿顺时针方向旋转90后得到A1B1C,则点B对应点B1的坐标是()A(3,1)B(2,2)C(1,3)D(3,0)7甲、乙两车从A地出发,匀速驶向B地甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示下列说法:乙车的速度是120km/h;m160;点H的坐标是(7,80);n7.1其中说法正确的有()A4个B3个C2
4、个D1个8如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是( )A着B沉C应D冷9在ABC中,C90,那么B的度数为( )A60B45C30D30或6010下列计算正确的是()A()28B+6C()00D(x2y)3二、填空题(共7小题,每小题3分,满分21分)11方程x+1=的解是_128的立方根为_.13若一个正n边形的每个内角为144,则这个正n边形的所有对角线的条数是_.14如图,点A,B,C在O上,四边形OABC是平行四边形,ODAB于点E,交O于点D,则BAD=_15的算术平方根是_16某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月
5、四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是_17据报道,截止2018年2月,我国在澳大利亚的留学生已经达到17.3万人,将17.3万用科学记数法表示为_三、解答题(共7小题,满分69分)18(10分)如图1,抛物线y=ax2+bx2与x轴交于点A(1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2)(1)求该抛物线的解析式;(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;(3
6、)如图3,连结AC,将AOC绕点O逆时针方向旋转,记旋转中的三角形为AOC,在旋转过程中,直线OC与直线BE交于点Q,若BOQ为等腰三角形,请直接写出点Q的坐标19(5分)化简:.20(8分)计算:(2)3+(3)(4)2+2(3)2(2)21(10分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角ACB=75,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角FHE=60,求篮框D到地面的距离(精确到0.01米).(参考数据:cos750.2588, sin750.9659,tan753
7、.732,) 22(10分)如图,儿童游乐场有一项射击游戏从O处发射小球,将球投入正方形篮筐DABC正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3)小球按照抛物线yx2+bx+c 飞行小球落地点P 坐标(n,0)(1)点C坐标为 ;(2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);(3)验证:随着n的变化,抛物线的顶点在函数yx2的图象上运动;(4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围23(12分)先化简,再求值:,其中a满足a2+2a1124(14分)已知,抛物线y=ax2+c过点(-2,2)和点(4,5),点F(0,2)是y 轴上的定点,
8、点B是抛物线上除顶点外的任意一点,直线l:y=kx+b经过点B、F且交x轴于点A(1)求抛物线的解析式;(2)如图1,过点B作BCx轴于点C,连接FC,求证:FC平分BFO;当k= 时,点F是线段AB的中点;(3)如图2, M(3,6)是抛物线内部一点,在抛物线上是否存在点B,使MBF的周长最小?若存在,求出这个最小值及直线l的解析式;若不存在,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x20,x1x20,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元
9、二次方程解的定义对D进行判断【详解】根据题意得x1+x2=1,x1x2=,故A、B选项错误;x1+x20,x1x20,x1、x2异号,且负数的绝对值大,故C选项错误;x1为一元二次方程2x2+2x1=0的根,2x12+2x11=0,x12+x1=,故D选项正确,故选D【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.2、B【解析】把m代入一元二次方程,可得,再利用两根之和,将式子变形后,整理代入,即可求值【详解】解:若,是一元二次方程的两个不同实数根,故选B【点睛】本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式3、A
10、【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得=(a+1)2-410=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根4、C【解析】根据不等式的解集为x 即可判断a,b的符号,则根据a,b的符号,即可解不等式bx-a0【详解】解不等式,移项得: 解集为x ,且a0, 解不等式,移项得:bxa两边同时除以b得:x,即x- 故选C
11、【点睛】此题考查解一元一次不等式,掌握运算法则是解题关键5、C【解析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a0,b0,c0,则当x=1时,y=a+b+c0,正确;当x=-1时,y=a-b+c1,正确;abc0,正确;对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=10,错误;对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c1,代入b=2a,则c-a1,正确故所有正确结论的序号是故选C6、B【解析】作出点A、B绕点C按顺时针方向旋转90后得到的对应点,再顺次连接可得A1B1C,即可得到点B对应点B1的坐标【详解】解:如图所示,A1B
12、1C即为旋转后的三角形,点B对应点B1的坐标为(2,2)故选:B【点睛】此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键 图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标7、B【解析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲则说明乙每小时比甲快40km,则乙的速度为120km/h正确;由图象第26小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离440=160km,则m=160,正确
13、;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),正确;乙返回时,甲乙相距80km,到两车相遇用时80(120+80)=0.4小时,则n=6+1+0.4=7.4,错误故选B【点睛】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态8、A【解析】正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答【详解】这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对故选:A【点睛】本题主要考查了利用正方体及其表面展开图的特点解题,明确正方体的展开图
14、的特征是解决此题的关键9、C【解析】根据特殊角的三角函数值可知A=60,再根据直角三角形中两锐角互余求出B的值即可.【详解】解:,A=60.C90,B=90-60=30.点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.10、D【解析】各项中每项计算得到结果,即可作出判断【详解】解:A原式=8,错误;B原式=2+4,错误;C原式=1,错误;D原式=x6y3= ,正确故选D【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键二、填空题(共7小题,每小题3分,满分21分)11、x=1【解析】无理方程两边平方转化为整式方程,求出整式方
15、程的解得到x的值,经检验即可得到无理方程的解【详解】两边平方得:(x+1)1=1x+5,即x1=4,开方得:x=1或x=-1,经检验x=-1是增根,无理方程的解为x=1故答案为x=112、2.【解析】根据立方根的定义可得8的立方根为2.【点睛】本题考查了立方根.13、2【解析】由正n边形的每个内角为144结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论【详解】一个正n边形的每个内角为144,144n=180(n-2),解得:n=1这个正n边形的所有对角线的条数是:= =2故答案为2【点睛】本题考查了多边形的内角以及多边形的对角线,解题的关键是求出
16、正n边形的边数本题属于基础题,难度不大,解决该题型题目时,根据多边形的内角和公式求出多边形边的条数是关键14、15【解析】根据圆的基本性质得出四边形OABC为菱形,AOB=60,然后根据同弧所对的圆心角与圆周角之间的关系得出答案【详解】解:OABC为平行四边形,OA=OC=OB, 四边形OABC为菱形,AOB=60,ODAB, BOD=30, BAD=302=15故答案为:15.【点睛】本题主要考查的是圆的基本性质问题,属于基础题型根据题意得出四边形OABC为菱形是解题的关键15、【解析】=8,()2=8,的算术平方根是.故答案为:. 16、乙【解析】据方差的意义可作出判断方差是用来衡量一组数
17、据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,即可得出答案【详解】解:S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,S乙2S丁2S甲2S丙2,二月份白菜价格最稳定的市场是乙;故答案为:乙【点睛】本题考查方差的意义解题关键是掌握方差的意义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定17、1.731【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要
18、看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】将17.3万用科学记数法表示为1.731故答案为1.731【点睛】本题考查了正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.三、解答题(共7小题,满分69分)18、(1)y=x2x2;(2)9;(3)Q坐标为()或(4)或(2,1)或(4+,)【解析】试题分析:把点代入抛物线,求出的值即可.先用待定系数法求出直线BE的解析式,进而求得直线AD的解析式,设则表示出,用配方法求出它的最大值,联立方程求出点的坐标, 最大值=,进而计算
19、四边形EAPD面积的最大值;分两种情况进行讨论即可.试题解析:(1)在抛物线上, 解得 抛物线的解析式为 (2)过点P作轴交AD于点G, 直线BE的解析式为 ADBE,设直线AD的解析式为 代入,可得 直线AD的解析式为 设则 则 当x=1时,PG的值最大,最大值为2,由 解得 或 最大值= ADBE, S四边形APDE最大=SADP最大+ (3)如图31中,当时,作于T 可得 如图32中,当时, 当时, 当时,Q3综上所述,满足条件点点Q坐标为或或或19、【解析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果【详解】解:原式20、-17.1【解析】按
20、照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的【详解】解:原式8+(3)189(2),8149(2),62+4.1,17.1【点睛】此题要注意正确掌握运算顺序以及符号的处理21、3.05米.【解析】延长FE交CB的延长线于M,过A作AGFM于G,解直角三角形即可得到结论【详解】延长FE交CB的延长线于M,过A作AGFM于G,在RtABC中,tanACB=,AB=BCtan75=0.603.732=2.2392,GM=AB=2.2392,在RtAGF中,FAG=FHD=60,sinFAG=,sin60=,FG=2.165,DM=FG+GMDF3.05米答:篮框D到地面的距
21、离是3.05米考点:解直角三角形的应用22、(1)(3,3);(2)顶点 N 坐标为(,);(3)详见解析;(4)n 【解析】(1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;(2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;(3)将点N的坐标代入y=x2,看是否符合解析式即可;(4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y3,当x=3时y2,据此列出关于n的不等式组,解之可得【详解】(1)A(2,2),B(3,2),D(2,3),ADBC1, 则点 C(3,3),故答案为:(3,3)
22、;(2)把(0,0)(n,0)代入 yx2+bx+c 得: ,解得:,抛物线解析式为 yx2+nx(x)2+,顶点 N 坐标为(,);(3)由(2)把 x代入 yx2()2 ,抛物线的顶点在函数 yx2的图象上运动;(4)根据题意,得:当 x2 时 y3,当 x3 时 y2, 即,解得:n【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力23、a2+2a,2【解析】根据分式的减法和除法可以化简题目中的式子,然后根据a22a22,即可解答本题.【详解】解:a(a+2)a2+2a,a2+2a22,a2+2a2,原式2【点睛
23、】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法24、(1);(2)见解析;(3)存在点B,使MBF的周长最小MBF周长的最小值为11,直线l的解析式为【解析】(1)用待定系数法将已知两点的坐标代入抛物线解析式即可解答.(2)由于BCy轴,容易看出OFCBCF,想证明BFCOFC,可转化为求证BFCBCF,根据“等边对等角”,也就是求证BCBF,可作BDy轴于点D,设B(m,),通过勾股定理用表示出的长度,与相等,即可证明.用表示出点的坐标,运用勾股定理表示出的长度,令,解关于的一元二次方程即可.(3)求折线或者三角形周长的最小值问题往往需要将某些线段代换转化到一条直线上,再通
24、过“两点之间线段最短”或者“垂线段最短”等定理寻找最值.本题可过点M作MNx轴于点N,交抛物线于点B1,过点B作BEx轴于点E,连接B1F,通过第(2)问的结论将MBF的边转化为,可以发现,当点运动到位置时,MBF周长取得最小值,根据求平面直角坐标系里任意两点之间的距离的方法代入点与的坐标求出的长度,再加上即是MBF周长的最小值;将点的横坐标代入二次函数求出,再联立与的坐标求出的解析式即可.【详解】(1)解:将点(-2,2)和(4,5)分别代入,得:解得: 抛物线的解析式为: (2)证明:过点B作BDy轴于点D,设B(m,), BCx轴,BDy轴,F(0,2)BC,BD|m|,DFBCBF B
25、FCBCF又BCy轴,OFCBCFBFCOFCFC平分BFO (说明:写一个给1分)(3)存在点B,使MBF的周长最小.过点M作MNx轴于点N,交抛物线于点B1,过点B作BEx轴于点E,连接B1F由(2)知B1FB1N,BFBEMB1F的周长MF+MB1+B1FMF+MB1+B1NMF+MNMBF的周长MF+MB+BFMF+MB+BE根据垂线段最短可知:MNMB+BE当点B在点B1处时,MBF的周长最小 M(3,6),F(0,2),MN6MBF周长的最小值MF+MN5+611 将x3代入,得:B1(3,)将F(0,2)和B1(3,)代入y=kx+b,得:,解得:此时直线l的解析式为:【点睛】本题综合考查了二次函数与一次函数的图象与性质,等腰三角形的性质,动点与最值问题等,熟练掌握各个知识点,结合图象作出合理辅助线,进行适当的转化是解答关键.