《内蒙古通辽市库伦旗2023届中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《内蒙古通辽市库伦旗2023届中考数学全真模拟试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若,则( )ABCD2下列计算正确的是( )A(a3)2a26a9B(a3)(a3)a29C(ab)2a2b2D(ab)2a2a23的倒数是()AB2C2D4周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园图中描述了小丽路上的情景,下列说法中错误的是()A小丽从家到达公园共用时间20分钟B公园离小丽家的距离为2000米C小丽在便利店时间为15分钟D便利店离小丽家的距离
3、为1000米5如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )AMBNCPDQ6如图,在五边形ABCDE中,A+B+E=300,DP,CP分别平分EDC、BCD,则P的度数是( )A60B65C55D507某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A24.5,24.5B24.5,24C24,24D23.5,248甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图
4、如图,则符合这一结果的实验可能是()A掷一枚正六面体的骰子,出现1点的概率B抛一枚硬币,出现正面的概率C从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D任意写一个整数,它能被2整除的概率9如图,在ABC中,DEBC交AB于D,交AC于E,错误的结论是( )ABCD10甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()ABCD11点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1x20x3,则y1,y2,y3的大小关系是()Ay1y2y3By2y3y1Cy3y2y1Dy2y1y312如图,从一块圆形纸片上剪出一个圆心
5、角为90的扇形ABC,使点A、B、C在圆周上,将剪下的扇形作为一个圆锥侧面,如果圆锥的高为,则这块圆形纸片的直径为( )A12cmB20cmC24cmD28cm二、填空题:(本大题共6个小题,每小题4分,共24分)13计算:|-3|-1=_14若关于的不等式组无解, 则的取值范围是 _.15抛物线y2x2+3x+k2经过点(1,0),那么k_16抛物线 的顶点坐标是_17分解因式=_,=_18分式有意义时,x的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)先化简,再求值:(x+1),其中x=sin30+21+20(6分)已知:如图,在半
6、径为2的扇形中,点C在半径OB上,AC的垂直平分线交OA于点D,交弧AB于点E,联结(1)若C是半径OB中点,求的正弦值;(2)若E是弧AB的中点,求证:;(3)联结CE,当DCE是以CD为腰的等腰三角形时,求CD的长21(6分)(1)计算:;(2)已知ab,求(a2)2+b(b2a)+4(a1)的值22(8分)已知P是的直径BA延长线上的一个动点,P的另一边交于点C、D,两点位于AB的上方,6,OP=m,如图所示另一个半径为6的经过点C、D,圆心距(1)当m=6时,求线段CD的长;(2)设圆心O1在直线上方,试用n的代数式表示m;(3)POO1在点P的运动过程中,是否能成为以OO1为腰的等腰
7、三角形,如果能,试求出此时n的值;如果不能,请说明理由23(8分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:成绩x分人数频率25x3040.0830x3580.1635x40a0.3240x45bc45x50100.2(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数24(10分) “校园手机”现象越来越受到社会的关注“寒假”期间,某校小记者随机调查了某地区若干名学
8、生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?25(10分)如图,已知在梯形ABCD中,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.(1)求证:;(2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果与相似,求BP的长.26(12分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在ABC
9、内,CAE+CBE=1(1)如图,当四边形ABCD和EFCG均为正方形时,连接BFi)求证:CAECBF;ii)若BE=1,AE=2,求CE的长;(2)如图,当四边形ABCD和EFCG均为矩形,且时,若BE1,AE=2,CE=3,求k的值;(3)如图,当四边形ABCD和EFCG均为菱形,且DAB=GEF=45时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系(直接写出结果,不必写出解答过程)27(12分)如图,AB是O的直径,CD切O于点D,且BDOC,连接AC(1)求证:AC是O的切线;(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和)参考答案一、选择题(
10、本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】等式左边为非负数,说明右边,由此可得b的取值范围【详解】解:,解得故选D【点睛】本题考查了二次根式的性质:,2、B【解析】利用完全平方公式及平方差公式计算即可【详解】解:A、原式=a2-6a+9,本选项错误;B、原式=a2-9,本选项正确;C、原式=a2-2ab+b2,本选项错误;D、原式=a2+2ab+b2,本选项错误,故选:B【点睛】本题考查了平方差公式和完全平方公式,熟练掌握公式是解题的关键3、B【解析】根据乘积是1的两个数叫做互为倒数解答【详解】解:11的倒数是1故选B【点睛】本题
11、考查了倒数的定义,是基础题,熟记概念是解题的关键4、C【解析】解:A小丽从家到达公园共用时间20分钟,正确;B公园离小丽家的距离为2000米,正确;C小丽在便利店时间为1510=5分钟,错误;D便利店离小丽家的距离为1000米,正确故选C5、A【解析】解:点P所表示的数为a,点P在数轴的右边,-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,数-3a所对应的点可能是M,故选A点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍6、A【解析】试题分析:根据五边形的内角和等于540,由A+B+E=300,可求BCD+CDE的度数,再根据
12、角平分线的定义可得PDC与PCD的角度和,进一步求得P的度数解:五边形的内角和等于540,A+B+E=300,BCD+CDE=540300=240,BCD、CDE的平分线在五边形内相交于点O,PDC+PCD=(BCD+CDE)=120,P=180120=60故选A考点:多边形内角与外角;三角形内角和定理7、A【解析】【分析】根据众数和中位数的定义进行求解即可得【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解
13、题的关键.8、C【解析】解:A掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B掷一枚硬币,出现正面朝上的概率为,故此选项错误;C从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:0.33;故此选项正确;D任意写出一个整数,能被2整除的概率为,故此选项错误故选C9、D【解析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DEBC,可得ADEABC,并可得:,故A,B,C正确;D错误;故选D【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质10、D【解析】试题分析:A是轴对称图形,故本选项错误;B是轴对称图形,故本选项错误;C是轴
14、对称图形,故本选项错误;D不是轴对称图形,故本选项正确故选D考点:轴对称图形11、D【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1x20x1,判断出三点所在的象限,再根据函数的增减性即可得出结论【详解】反比例函数y=中,k=10,此函数图象的两个分支在一、三象限,x1x20x1,A、B在第三象限,点C在第一象限,y10,y20,y10,在第三象限y随x的增大而减小,y1y2,y2y1y1故选D【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键12、C【解析】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,
15、利用等腰直径三角形的性质得到AB=R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2r=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到这块圆形纸片的直径【详解】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,则AB=R,根据题意得:2r=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以这块圆形纸片的直径为24cm故选C【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长二、填空题:(本大题共6个小题,每小题4分,共24分)13、2【解析】根据有理
16、数的加减混合运算法则计算.【详解】解:|3|1=3-1=2.故答案为2.【点睛】考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键.14、【解析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得【详解】,解得:xa+3,解得:x1根据题意得:a+31,解得:a-2故答案是:a-2【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤.15、3.【解析】试题解析:把(-1,0)代入得:2-3+k-2=0,解得:k=3.故答案为3.16、(0,-1)【解析】a=2,b=0,c=-1,-=0, ,抛物线的顶点坐标是(0,-1),
17、故答案为(0,-1).17、 【解析】此题考查因式分解答案点评:利用提公因式、平方差公式、完全平方公式分解因式18、x1【解析】要使代数式有意义时,必有1x2,可解得x的范围【详解】根据题意得:1x2,解得:x1故答案为x1【点睛】考查了分式和二次根式有意义的条件二次根式有意义,被开方数为非负数,分式有意义,分母不为2三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、-5【解析】根据分式的运算法则以及实数的运算法则即可求出答案【详解】当x=sin30+21+时,x=+2=3,原式=5.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属
18、于基础题型20、(2);(2)详见解析;(2)当是以CD为腰的等腰三角形时,CD的长为2或【解析】(2)先求出OCOB=2,设OD=x,得出CD=AD=OAOD=2x,根据勾股定理得:(2x)2x2=2求出x,即可得出结论;(2)先判断出,进而得出CBE=BCE,再判断出OBEEBC,即可得出结论;(3)分两种情况:当CD=CE时,判断出四边形ADCE是菱形,得出OCE=90在RtOCE中,OC2=OE2CE2=4a2在RtCOD中,OC2=CD2OD2=a2(2a)2,建立方程求解即可;当CD=DE时,判断出DAE=DEA,再判断出OAE=OEA,进而得出DEA=OEA,即:点D和点O重合,
19、即可得出结论【详解】(2)C是半径OB中点,OCOB=2DE是AC的垂直平分线,AD=CD设OD=x,CD=AD=OAOD=2x在RtOCD中,根据勾股定理得:(2x)2x2=2,x,CD,sinOCD;(2)如图2,连接AE,CEDE是AC垂直平分线,AE=CEE是弧AB的中点,AE=BE,BE=CE,CBE=BCE连接OE,OE=OB,OBE=OEB,CBE=BCE=OEBB=B,OBEEBC,BE2=BOBC;(3)DCE是以CD为腰的等腰三角形,分两种情况讨论:当CD=CE时DE是AC的垂直平分线,AD=CD,AE=CE,AD=CD=CE=AE,四边形ADCE是菱形,CEAD,OCE=
20、90,设菱形的边长为a,OD=OAAD=2a在RtOCE中,OC2=OE2CE2=4a2在RtCOD中,OC2=CD2OD2=a2(2a)2,4a2=a2(2a)2,a=22(舍)或a=;CD=;当CD=DE时DE是AC垂直平分线,AD=CD,AD=DE,DAE=DEA连接OE,OA=OE,OAE=OEA,DEA=OEA,点D和点O重合,此时,点C和点B重合,CD=2综上所述:当DCE是以CD为腰的等腰三角形时,CD的长为2或【点睛】本题是圆的综合题,主要考查了勾股定理,线段垂直平分线的性质,菱形的判定和性质,锐角三角函数,作出辅助线是解答本题的关键21、(1);(1)1.【解析】(1)先计算
21、负整数指数幂、化简二次根式、代入三角函数值、计算零指数幂,再计算乘法和加减运算可得;(1)先根据整式的混合运算顺序和运算法则化简原式,再利用完全平方公式因式分解,最后将ab的值整体代入计算可得【详解】(1)原式=4+181=4+141=11;(1)原式=a14a+4+b11ab+4a4=a11ab+b1=(ab)1,当ab=时,原式=()1=1【点睛】本题主要考查实数和整式的混合运算,解题的关键是掌握实数与整式的混合运算顺序和运算法则及完全平方公式因式分解的能力22、 (1)CD=;(2)m= ;(3) n的值为或 【解析】分析:(1)过点作,垂足为点,连接解Rt,得到的长由勾股定理得的长,再
22、由垂径定理即可得到结论; (2)解Rt,得到和Rt中,由勾股定理即可得到结论; (3)成为等腰三角形可分以下几种情况讨论: 当圆心、在弦异侧时,分和当圆心、在弦同侧时,同理可得结论详解:(1)过点作,垂足为点,连接在Rt, 6, 由勾股定理得: ,(2)在Rt,在Rt中,在Rt中,可得: ,解得(3)成为等腰三角形可分以下几种情况: 当圆心、在弦异侧时i),即,由,解得即圆心距等于、的半径的和,就有、外切不合题意舍去ii),由 ,解得:,即 ,解得当圆心、在弦同侧时,同理可得: 是钝角,只能是,即,解得综上所述:n的值为或点睛:本题是圆的综合题考查了圆的有关性质和两圆的位置关系以及解直径三角形
23、解答(3)的关键是要分类讨论23、(1)50;(2)详见解析;(3)220.【解析】(1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b的值,再用1减去其它各组的频率即可求得c的值,即可把频数分布直方图补充完整;(3)先得到成绩优秀的频率,再乘以500即可求解.【详解】解:(1)40.08=50(名)答:此次抽查了50名学生的成绩;(2)a=500.32=16(名),b=50481610=12(名),c=10.080.160.320.2=0.24,如图所示:(3)500(0.24+0.2)=5000.44=22
24、0(名)答:本次测试九年级学生中成绩优秀的人数是220名【点睛】本题主要考查数据的收集、 处理以及统计图表。24、(1)答案见解析(2)36(3)4550名【解析】试题分析:(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;(2)利用360乘以对应的比例即可求解;(3)利用总人数6500乘以对应的比例即可求解(1)这次调查的家长人数为8020%=400人,反对人数是:400-40-80=280人,;(2)360=36;(3)反对中学生带手机的大约有6500=4550(名)考点:1.条形统计图;2.用样本估计总体;3.扇形统计图25、(1)见解析;(2);(3)当或8时,与相似.
25、【解析】(1)想办法证明即可解决问题;(2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;(3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;【详解】(1)证明:四边形ABCD是等腰梯形,.(2)解:作于M,于N.则四边形是矩形.在中,.(3)解:,相似时,与相似,当时,此时,当时,此时,综上所述,当PB=5或8时,与相似.【点睛】本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中
26、考压轴题.26、(1)i)证明见试题解析;ii);(2);(3)【解析】(1)i)由ACE+ECB=45, BCF+ECB=45,得到ACE=BCF,又由于,故CAECBF;ii)由,得到BF=,再由CAECBF,得到CAE=CBF,进一步可得到EBF=1,从而有,解得;(2)连接BF,同理可得:EBF=1,由,得到,故,从而,得到,代入解方程即可;(3)连接BF,同理可得:EBF=1,过C作CHAB延长线于H,可得:,故,从而有【详解】解:(1)i)ACE+ECB=45, BCF+ECB=45,ACE=BCF,又,CAECBF;ii),BF=,CAECBF,CAE=CBF,又CAE+CBE=
27、1,CBF+CBE=1,即EBF=1,解得;(2)连接BF,同理可得:EBF=1,解得;(3)连接BF,同理可得:EBF=1,过C作CHAB延长线于H,可得:,【点睛】本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质27、(1)证明见解析;(2);【解析】(1)连接OD,先根据切线的性质得到CDO=90,再根据平行线的性质得到AOC=OBD,COD=ODB,又因为OB=OD,所以OBD=ODB,即AOC=COD,再根据全等三角形的判定与性质得到CAO=CDO=90,根据切线的判定即可得证;(2)因为AB=OC=4,OB=OD,RtODC与RtOAC是含30的直角三角形,从而
28、得到DOB=60,即BOD为等边三角形,再用扇形的面积减去BOD的面积即可.【详解】(1)证明:连接OD,CD与圆O相切,ODCD,CDO=90,BDOC,AOC=OBD,COD=ODB,OB=OD,OBD=ODB,AOC=COD,在AOC和DOC中,AOCEOC(SAS),CAO=CDO=90,则AC与圆O相切;(2)AB=OC=4,OB=OD,RtODC与RtOAC是含30的直角三角形,DOC=COA=60,DOB=60,BOD为等边三角形,图中阴影部分的面积=扇形DOB的面积DOB的面积,=【点睛】本题主要考查切线的判定与性质,全等三角形的判定与性质,含30角的直角三角形的性质,扇形的面积公式等,难度中等,属于综合题,解此题的关键在于熟练掌握其知识点.