《2023届内蒙古通辽市库伦旗重点达标名校毕业升学考试模拟卷数学卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届内蒙古通辽市库伦旗重点达标名校毕业升学考试模拟卷数学卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,直线ab,一块含60角的直角三角板ABC(A60)按如图所示放置若155,则2的度数为()A105B110C115D1202下列汽车标志中,不是轴对称图形的是( )ABCD3如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n1
2、)个点.当n2018时,这个图形总的点数S为()A8064B8067C8068D80724如果代数式有意义,则实数x的取值范围是( )Ax3Bx0Cx3且x0Dx35抛物线yx22x3的对称轴是( )A直线x1B直线x1C直线x2D直线x26如图,在四边形ABCD中,如果ADC=BAC,那么下列条件中不能判定ADC和BAC相似的是()ADAC=ABCBAC是BCD的平分线CAC2=BCCDD7根据天津市北大港湿地自然保护总体规划(20172025),2018年将建立养殖业退出补偿机制,生态补水78000000m1将78000000用科学记数法表示应为()A780105 B78106 C7.81
3、07 D0.781088据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A3.91010B3.9109C0.391011D391099若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是( )A6B3.5C2.5D110如图,某计算机中有、三个按键,以下是这三个按键的功能(1):将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成1(2):将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.2(3):将荧幕显示的数变成它的平方
4、,例如:荧幕显示的数为6时,按下后会变成3若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少()A0.01B0.1C10D10011已知抛物线y=ax2+bx+c(a1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:抛物线过原点;ab+c1;当x1时,y随x增大而增大;抛物线的顶点坐标为(2,b);若ax2+bx+c=b,则b24ac=1其中正确的是()ABCD12 “保护水资源,节约用水”应成为每个公民的自觉行为下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家
5、庭的月用水量说法错误的是()月用水量(吨)4569户数(户)3421A中位数是5吨B众数是5吨C极差是3吨D平均数是5.3吨二、填空题:(本大题共6个小题,每小题4分,共24分)13从2,1,1,2四个数中,随机抽取两个数相乘,积为大于4小于2的概率是_14分解因式_15如图,将AOB绕点O按逆时针方向旋转45后得到COD,若AOB=15,则AOD=_度16有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是_17如图,在四边形中,点从点出发以的速度向点运动,点从点出发以的速度向点运动,、两点同
6、时出发,其中一点到达终点时另一点也停止运动若,当_时,是等腰三角形18如图,用圆心角为120,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_cm三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)先化简再求值:(a),其中a=1+,b=120(6分)如图,AB是的直径,AF是切线,CD是垂直于AB的弦,垂足为点E,过点C作DA的平行线与AF相交于点F,已知,求AD的长;求证:FC是的切线21(6分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于m,则称m为这个函数的反向值在函数存在反向值时,该函数的最大反向值
7、与最小反向值之差n称为这个函数的反向距离特别地,当函数只有一个反向值时,其反向距离n为零例如,图中的函数有4,1两个反向值,其反向距离n等于1(1)分别判断函数yx+1,y,yx2有没有反向值?如果有,直接写出其反向距离;(2)对于函数yx2b2x,若其反向距离为零,求b的值;若1b3,求其反向距离n的取值范围;(3)若函数y请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围22(8分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元/个)之间的对应关系如图所示试
8、判断y与x之间的函数关系,并求出函数关系式;若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的函数关系式;若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出最大利润23(8分)计算:|(2)0+2cos45 解方程: =124(10分)如图,A=B=30(1)尺规作图:过点C作CDAC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BDAB25(10分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件
9、商品每降价1元,商场平均每天可多售出 2件设每件商品降价x元. 据此规律,请回答:(1)商场日销售量增加 件,每件商品盈利 元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?26(12分)某通讯公司推出,两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示有月租的收费方式是_(填“”或“”),月租费是_元;分别求出,两种收费方式中y与自变量x之间的函数表达式;请你根据用户通讯时间的多少,给出经济实惠的选择建议27(12分)如图,在RtABC中,ACB=9
10、0,以AC为直径的O与AB边交于点D,过点D作O的切线交BC于点E求证:BE=EC填空:若B=30,AC=2,则DE=_;当B=_度时,以O,D,E,C为顶点的四边形是正方形参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】如图,首先证明AMO=2,然后运用对顶角的性质求出ANM=55;借助三角形外角的性质求出AMO即可解决问题【详解】如图,对图形进行点标注.直线ab,AMO=2;ANM=1,而1=55,ANM=55,2=AMO=A+ANM=60+55=115,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质,
11、熟练掌握和灵活运用相关知识是解题的关键.2、C【解析】根据轴对称图形的概念求解【详解】A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误故选C【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合3、C【解析】分析:本题重点注意各个顶点同时在两条边上,计算点的个数时,不要把顶点重复计算了详解:此题中要计算点的个数,可以类似周长的计算方法进行,但应注意各个顶点重复了一次 如当n=2时,共有S2=424=4;当n=3时,共有S3=434,依此类推,即Sn=4n4,当n=2018时,S2018=42018
12、4=1 故选C点睛:本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律4、C【解析】根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可【详解】由题意得,x+30,x0,解得x3且x0,故选C.【点睛】本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.5、B【解析】根据抛物线的对称轴公式:计算即可【详解】解:抛物线yx22x3的对称轴是直线故选B【点睛】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键6、C【解析】结合图形,逐项进行分析即可.【详解】在ADC和BAC中,ADC=BAC,如果ADCBAC,需满足的条件有:DAC=
13、ABC或AC是BCD的平分线;,故选C【点睛】本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.7、C【解析】科学记数法记数时,主要是准确把握标准形式a10n即可.【详解】解:78000000= 7.8107.故选C.【点睛】科学记数法的形式是a10n,其中1a10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.8、A【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】39000000000=3.91故选A【点睛】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a
14、时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数9、C【解析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置【详解】(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,中位数是4,平均数为(2+3+4+5+x)5,4=(2+3+4+5+x)5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)5=4,解得x=6,不符合排列顺序;
15、(3)将这组数据从小到大的顺序排列后2,3,x,4,5,中位数是x,平均数(2+3+4+5+x)5=x,解得x=3.5,符合排列顺序;(4)将这组数据从小到大的顺序排列后2,x,3,4,5,中位数是3,平均数(2+3+4+5+x)5=3,解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x,2,3,4,5,中位数是3,平均数(2+3+4+5+x)5=3,解得x=1,符合排列顺序;x的值为6、3.5或1故选C【点睛】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整注意找中位数的时候
16、一定要先排好顺序,然后再根据奇数和偶数个来确定中位数如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数10、B【解析】根据题中的按键顺序确定出显示的数即可【详解】解:根据题意得: =40,=0.4,0.42=0.04,=0.4,=40,402=400,4006=464,则第400次为0.4故选B【点睛】此题考查了计算器数的平方,弄清按键顺序是解本题的关键11、B【解析】由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论正确;当x=1时,y1,得到ab+c1,结论错误;根据抛物线的对称性得到结论错误;将x=2代入二次函数解析式中结合4a+b+c=
17、1,即可求出抛物线的顶点坐标,结论正确;根据抛物线的顶点坐标为(2,b),判断【详解】解:抛物线y=ax2+bx+c(a1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),抛物线与x轴的另一交点坐标为(1,1),抛物线过原点,结论正确;当x=1时,y1,ab+c1,结论错误;当x1时,y随x增大而减小,错误;抛物线y=ax2+bx+c(a1)的对称轴为直线x=2,且抛物线过原点,c=1,b=4a,c=1,4a+b+c=1,当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,抛物线的顶点坐标为(2,b),结论正确;抛物线的顶点坐标为(2,b),ax2+bx+c=b
18、时,b24ac=1,正确;综上所述,正确的结论有:故选B【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定12、C【解析】根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案【详解】解:A、中位数(5+5)25(吨),正确,故选项错误;B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;C、极差为94=5(吨),错误,故选项正确;D、平均数=(43+54+62+91)10=5.3,正确,故选项错误故选:C【点睛】此题主要考查了平均数、中位数、众数和极差的概念要掌
19、握这些基本概念才能熟练解题二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得【详解】解:列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,积为大于-4小于2的概率为=,故答案为:【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比14、(x+y+z)(xyz)【解析】
20、当被分解的式子是四项时,应考虑运用分组分解法进行分解本题后三项可以为一组组成完全平方式,再用平方差公式即可【详解】x2-y2-z2-2yz,=x2-(y2+z2+2yz),=x2-(y+z)2,=(x+y+z)(x-y-z)故答案为(x+y+z)(x-y-z)【点睛】本题考查了用分组分解法进行因式分解难点是采用两两分组还是三一分组本题后三项可组成完全平方公式,可把后三项分为一组15、30【解析】根据旋转的性质得到BOD=45,再用BOD减去AOB即可.【详解】将AOB绕点O按逆时针方向旋转45后,得到COD,BOD=45,又AOB=15,AOD=BODAOB=4515=30.故答案为30.16
21、、【解析】列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率【详解】解:列表如下:567895(6、5)(7、5)(8、5)(9、5)6(5、6)(7、6)(8、6)(9、6)7(5、7)(6、7)(8、7)(9、7)8(5、8)(6、8)(7、8)(9、8)9(5、9)(6、9)(7、9)(8、9)所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,则P(恰好是两个连续整数)= 故答案为.【点睛】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比17、或【解析】根据题意,用时间t表示出DQ和PC,然后根据等腰三角形腰的情况分类讨论,当时,画出对应的
22、图形,可知点在的垂直平分线上,QE=,AE=BP,列出方程即可求出t;当时,过点作于,根据勾股定理求出PQ,然后列出方程即可求出t【详解】解:由运动知,是等腰三角形,且,当时,过点P作PEAD于点E点在的垂直平分线上, QE=,AE=BP,当时,如图,过点作于,四边形是矩形,在中,点在边上,不和重合,此种情况符合题意,即或时,是等腰三角形故答案为:或【点睛】此题考查的是等腰三角形的定义和动点问题,掌握等腰三角形的定义和分类讨论的数学思想是解决此题的关键18、【解析】先求出扇形弧长,再求出圆锥的底面半径,再根据勾股定理 即可出圆锥的高.【详解】圆心角为120,半径为6cm的扇形的弧长为4cm圆锥
23、的底面半径为2,故圆锥的高为=4cm【点睛】此题主要考查圆的弧长及圆锥的底面半径,解题的关键是熟知圆的相关公式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、原式=【解析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】原式=,当a=1+,b=1时,原式=.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.20、(1);(2)证明见解析.【解析】(1)首先连接OD,由垂径定理,可求得DE的长,又由勾股定理,可求得半径OD的长,然后由勾股定理求得AD的长;(2)连接OF
24、、OC,先证明四边形AFCD是菱形,易证得AFOCFO,继而可证得FC是O的切线【详解】证明:连接OD,是的直径,设,在中,解得:,在中,;连接OF、OC,是切线,四边形FADC是平行四边形,平行四边形FADC是菱形,即,即,点C在上,是的切线【点睛】此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用21、(1)y有反向值,反向距离为2;yx2有反向值,反向距离是1;(2)b1;0n8;(3)当m2或m2时,n2,当2m2时,n2【解析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反
25、向距离;(2)根据题意可以求得相应的b的值;根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题【详解】(1)由题意可得,当mm+1时,该方程无解,故函数yx+1没有反向值,当m时,m1,n1(1)2,故y有反向值,反向距离为2,当mm2,得m0或m1,n0(1)1,故yx2有反向值,反向距离是1;(2)令mm2b2m,解得,m0或mb21,反向距离为零,|b210|0,解得,b1;令mm2b2m,解得,m0或mb21,n|b210|b21|,1b3,0n8;(3)y,当xm时,mm23m,得m0或m2,n202,m2或m2;当xm时,mm23m,解
26、得,m0或m2,n0(2)2,2m2,由上可得,当m2或m2时,n2,当2m2时,n2【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题22、(1)y是x的一次函数,y=30x+1(2)w=30x2780x31(3)以3元/个的价格销售这批许愿瓶可获得最大利润4元【解析】(1)观察可得该函数图象是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,进而把其余两点的横坐标代入看纵坐标是否与点的纵坐标相同(2)销售利润=每个许愿瓶的利润销售量(3)根据进货成本可得自变量的取值,结合二次函数的关系式即可求得相应的最大利润
27、【详解】解:(1)y是x的一次函数,设y=kx+b,图象过点(10,300),(12,240),解得y=30x1当x=14时,y=180;当x=16时,y=120,点(14,180),(16,120)均在函数y=30x+1图象上y与x之间的函数关系式为y=30x+1(2)w=(x6)(30x1)=30x2780x31,w与x之间的函数关系式为w=30x2780x31(3)由题意得:6(30x+1)900,解得x3w=30x2780x31图象对称轴为:a=300,抛物线开口向下,当x3时,w随x增大而减小当x=3时,w最大=4以3元/个的价格销售这批许愿瓶可获得最大利润4元23、(1)1;(2)
28、x=1是原方程的根【解析】(1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案;(2)直接去分母再解方程得出答案【详解】(1)原式=21+2=1+=1;(2)去分母得:3x=x3+1,解得:x=1,检验:当x=1时,x30,故x=1是原方程的根【点睛】此题主要考查了实数运算和解分式方程,正确掌握解分式方程的方法是解题关键24、见解析【解析】(1)利用过直线上一点作直线的垂线确定D点即可得;(2)根据圆周角定理,由ACD=90,根据三角形的内角和和等腰三角形的性质得到DCB=A=30,推出CDBACB,根据相似三角形的性质即可得到结论【详解】(1)如图所示,CD即为所求;
29、(2)CDAC,ACD=90A=B=30,ACB=120DCB=A=30,B=B,CDBACB,BC2=BDAB【点睛】考查了等腰三角形的性质和相似三角形的判定和性质和作图:在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作25、(1) 2x 50x (2)每件商品降价20元,商场日盈利可达2100元.【解析】(1) 2x 50x(2)解:由题意,得(302x)(50x)2 100解之得x115,x220.该商场为尽快减少库存,降价越多越吸引顾客x20.答:每件商品降价20
30、元,商场日盈利可达2 100元26、 (1)30;(2)y10.1x30,y20.2x;(3)当通话时间少于300分钟时,选择通话方式实惠;当通话时间超过300分钟时,选择通话方式实惠;当通话时间为300分钟时,选择通话方式,花费一样【解析】试题分析:(1)根据当通讯时间为零的时候的函数值可以得到哪种方式有月租,哪种方式没有,有多少;(2)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;(3)求出当两种收费方式费用相同的时候自变量的值,以此值为界说明消费方式即可解:(1);30;(2)设y1=k1x+30,y2=k2x,由题意得:将(500,80),(500,100)分
31、别代入即可:500k1+30=80,k1=0.1,500k2=100,k2=0.2故所求的解析式为y1=0.1x+30; y2=0.2x;(3)当通讯时间相同时y1=y2,得0.2x=0.1x+30,解得x=300;当x=300时,y=1故由图可知当通话时间在300分钟内,选择通话方式实惠;当通话时间超过300分钟时,选择通话方式实惠;当通话时间在300分钟时,选择通话方式、一样实惠27、(1)见解析;(2)3;1.【解析】(1)证出EC为O的切线;由切线长定理得出EC=ED,再求得EB=ED,即可得出结论;(2)由含30角的直角三角形的性质得出AB,由勾股定理求出BC,再由直角三角形斜边上的
32、中线性质即可得出DE;由等腰三角形的性质,得到ODA=A=1,于是DOC=90然后根据有一组邻边相等的矩形是正方形,即可得到结论【详解】(1)证明:连接DOACB=90,AC为直径,EC为O的切线;又ED也为O的切线,EC=ED,又EDO=90,BDE+ADO=90,BDE+A=90又B+A=90,BDE=B,BE=ED,BE=EC;(2)解:ACB=90,B=30,AC=2,AB=2AC=4,BC=6,AC为直径,BDC=ADC=90,由(1)得:BE=EC,DE=BC=3,故答案为3;当B=1时,四边形ODEC是正方形,理由如下:ACB=90,A=1,OA=OD,ADO=1,AOD=90,DOC=90,ODE=90,四边形DECO是矩形,OD=OC,矩形DECO是正方形故答案为1【点睛】本题考查了圆的切线性质、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型