2023届内蒙古通辽市科尔沁左翼中学旗县重点中学中考数学全真模拟试题含解析.doc

上传人:茅**** 文档编号:87790718 上传时间:2023-04-17 格式:DOC 页数:17 大小:736.50KB
返回 下载 相关 举报
2023届内蒙古通辽市科尔沁左翼中学旗县重点中学中考数学全真模拟试题含解析.doc_第1页
第1页 / 共17页
2023届内蒙古通辽市科尔沁左翼中学旗县重点中学中考数学全真模拟试题含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2023届内蒙古通辽市科尔沁左翼中学旗县重点中学中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届内蒙古通辽市科尔沁左翼中学旗县重点中学中考数学全真模拟试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件个,依题意列方程为( )ABC

2、D2衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A=10B=10C=10D +=103在同一平面内,下列说法:过两点有且只有一条直线;两条不相同的直线有且只有一个公共点;经过直线外一点有且只有一条直线与已知直线垂直;经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( )A1个B2个C3个D4个4有下列四种说法:半径确定了,圆就确定了;直径是弦;弦是直径;半圆

3、是弧,但弧不一定是半圆其中,错误的说法有()A1种B2种C3种D4种5将一副三角板(A30)按如图所示方式摆放,使得ABEF,则1等于()A75B90C105D1156如图,右侧立体图形的俯视图是( )A B C D7如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A5元,2元B2元,5元C4.5元,1.5元D5.5元,2.5元8如图,在RtABC中,C=90,CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为()A1B2C3D49点A(2,5)关于原点对称的点的坐标是 ( )A(2,5)

4、 B(2,5) C(2,5) D(5,2)10若反比例函数的图像经过点,则一次函数与在同一平面直角坐标系中的大致图像是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11用不等号“”或“”连接:sin50_cos5012如图,已知O为ABC内一点,点D、E分别在边AB和AC上,且,DEBC,设、,那么_(用、表示)13为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分则这组数据的中位数为_分14如图,RtABC中,若C=90,BC=4,tanA=,则AB=_15中国的九章算术是世界现代

5、数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。问牛羊各值金几何?”译文:今有牛5头,羊2头,共值金10两,牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金两、两,依题意,可列出方程为_ .16如图,等边三角形ABC内接于O,若O的半径为2,则图中阴影部分的面积等于_三、解答题(共8题,共72分)17(8分)如图,对称轴为直线x的抛物线经过点A(6,0)和B(0,4)(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关

6、系式,并写出自变量x的取值范围;(3)当四边形OEAF的面积为24时,请判断OEAF是否为菱形?是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由18(8分)4件同型号的产品中,有1件不合格品和3件合格品从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?19(8分)已知,ABC中,A=68,以AB为直径的O与

7、AC,BC的交点分别为D,E()如图,求CED的大小;()如图,当DE=BE时,求C的大小20(8分)已知,在菱形ABCD中,ADC=60,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE(1)如图1,线段EH、CH、AE之间的数量关系是 ;(2)如图2,将DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH21(8分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生

8、人数为 人,参加球类活动的人数的百分比为 (2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为 .(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.22(10分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度为 米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距

9、地面的高度(米)与登山时间(分)之间的函数关系式(3)登山多长时间时,甲、乙两人距地面的高度差为50米?23(12分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元)10002000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;若要求在不超

10、过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?24如图,直线y2x6与反比例函数y(k0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线yn(0n6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线yn沿y轴方向平移,当n为何值时,BMN的面积最大?参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可【详解】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,由题意得,故选:

11、A【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可2、A【解析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,根据题意列方程为:.故选:.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.3、C【解析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解【详解】解:在同一平面内,过两点有且只有一条直线,故正确;两条不相同的直线相交有且只有一个公共点,平行

12、没有公共点,故错误;在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故正确;经过直线外一点有且只有一条直线与已知直线平行,故正确,综上所述,正确的有共3个,故选C【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键4、B【解析】根据弦的定义、弧的定义、以及确定圆的条件即可解决【详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫

13、半圆,所以半圆是弧但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确其中错误说法的是两个故选B【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆5、C【解析】分析:依据ABEF,即可得BDE=E=45,再根据A=30,可得B=60,利用三角形外角性质,即可得到1=BDE+B=105详解:ABEF,BDE=E=45,又A=30,B=60,1=BDE+B=45+60=105,故选C点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等6、A【解析】试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视

14、图是,故选A.考点:简单组合体的三视图7、A【解析】可设1本笔记本的单价为x元,1支笔的单价为y元,由题意可得等量关系:3本笔记本的费用+2支笔的费用=19元,1本笔记本的费用1支笔的费用=3元,根据等量关系列出方程组,再求解即可【详解】设1本笔记本的单价为x元,1支笔的单价为y元,依题意有:,解得:故1本笔记本的单价为5元,1支笔的单价为2元故选A【点睛】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组8、A【解析】试题分析:由角平分线和线段垂直平分线的性质可求得B=CAD=DAB=30,DE垂直平分AB,DA=DB,B=DAB,AD平分CAB,

15、CAD=DAB, C=90,3CAD=90,CAD=30, AD平分CAB,DEAB,CDAC, CD=DE=BD, BC=3, CD=DE=1考点:线段垂直平分线的性质9、B【解析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)【详解】根据中心对称的性质,得点P(2,5)关于原点对称点的点的坐标是(2, 5).故选:B.【点睛】考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)10、D【解析】甶待定系数法可求出函数的解析式为:,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.【详解】解

16、:由于函数的图像经过点,则有 图象过第二、四象限,k=-1,一次函数y=x-1,图象经过第一、三、四象限,故选:D【点睛】本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】试题解析:cos50=sin40,sin50sin40,sin50cos50故答案为点睛:当角度在090间变化时,正弦值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小)12、【解析】根据,DEBC,结合平行线分线段成比例来求.

17、【详解】,DEBC, = =.,.故答案为:.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.13、1【解析】13份试卷成绩,结果如下:3个140分,4个1分,2个130分,2个120分,1个100分,1个80分,第7个数是1分,中位数为1分,故答案为114、1【解析】在RtABC中,已知tanA,BC的值,根据tanA=,可将AC的值求出,再由勾股定理可将斜边AB的长求出【详解】解:RtABC中,BC=4,tanA= 则 故答案为1【点睛】考查解直角三角形以及勾股定理,熟练掌握锐角三角函数是解题的关键.15、【解析】【分析】牛、羊每头各值金两、两,根据等量关系:“牛5头,

18、羊2头,共值金10两”,“牛2头,羊5头,共值金8两”列方程组即可.【详解】牛、羊每头各值金两、两,由题意得:,故答案为:.【点睛】本题考查了二元一次方程组的应用,弄清题意,找出等量关系列出方程组是关键.16、 【解析】分析:题图中阴影部分为弓形与三角形的和,因此求出扇形AOC的面积即可,所以关键是求圆心角的度数.本题考查组合图形的求法.扇形面积公式等.详解:连结OC,ABC为正三角形,AOC=120, , 图中阴影部分的面积等于 S扇形AOC=即S阴影=cm2.故答案为.点睛:本题考查了等边三角形性质,扇形的面积,三角形的面积等知识点的应用,关键是求出AOC的度数,主要考查学生综合运用定理进

19、行推理和计算的能力.三、解答题(共8题,共72分)17、(1)抛物线解析式为,顶点为;(2),11;(3)四边形是菱形;不存在,理由见解析【解析】(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可(2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为OAE的高,由此可根据三角形的面积公式得出AOE的面积与x的函数关系式进而可得出S与x的函数关系式(3)将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满

20、足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形如果四边形OEAF是正方形,那么三角形OEA应该是等腰直角三角形,即E点的坐标为(3,3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E点【详解】(1)由抛物线的对称轴是,可设解析式为把A、B两点坐标代入上式,得解之,得故抛物线解析式为,顶点为(2)点在抛物线上,位于第四象限,且坐标适合,y0,y表示点E到OA的距离OA是的对角线,因为抛物线与轴的两个交点是(1,0)的(1,0),所以,自变量的取值范围是11(3)根据题意,当S = 24时,即化简,得解之,得故所求的点E有两个,分别为E1(3,4),E2(4,4)点E1

21、(3,4)满足OE = AE,所以是菱形;点E2(4,4)不满足OE = AE,所以不是菱形当OAEF,且OA = EF时,是正方形,此时点E的坐标只能是(3,3)而坐标为(3,3)的点不在抛物线上,故不存在这样的点E,使为正方形18、(1);(2);(3)x=1【解析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.【详解】解:(1)4件同型号的产品中,有1件不合格品,P(不合格品)=;(2)共有12种情况,抽到的都是合格品的情况有6种,P(抽到

22、的都是合格品)=;(3)大量重复试验后发现,抽到合格品的频率稳定在0.95,抽到合格品的概率等于0.95, =0.95,解得:x=1【点睛】本题考查利用频率估计概率;概率公式;列表法与树状图法19、()68()56【解析】(1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明CED=A即可,(2)连接AE,在RtAEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.【详解】()四边形ABED 圆内接四边形,A+DEB=180,CED+DEB=180,CED=A,A=68,

23、CED=68()连接AEDE=BD,,DAE=EAB=CAB=34,AB是直径,AEB=90,AEC=90,C=90DAE=9034=56【点睛】本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题20、 (1) EH2+CH2=AE2;(2)见解析.【解析】分析:(1)如图1,过E作EMAD于M,由四边形ABCD是菱形,得到AD=CD,ADE=CDE,通过DMEDHE,根据全等三角形的性质得到EM=EH,DM=DH,等量代换得到AM=CH,根据勾股定理即可得到结论;(2)如图2,根据菱形的性质得到BDC=BDA=30,DA=DC,在CH上截取

24、HG,使HG=EH,推出DEG是等边三角形,由等边三角形的性质得到EDG=60,推出DAEDCG,根据全等三角形的性质即可得到结论详解:(1)EH2+CH2=AE2,如图1,过E作EMAD于M,四边形ABCD是菱形,AD=CD,ADE=CDE,EHCD,DME=DHE=90,在DME与DHE中, ,DMEDHE,EM=EH,DM=DH,AM=CH,在RtAME中,AE2=AM2+EM2,AE2=EH2+CH2;故答案为:EH2+CH2=AE2;(2)如图2,菱形ABCD,ADC=60,BDC=BDA=30,DA=DC,EHCD,DEH=60,在CH上截取HG,使HG=EH,DHEG,ED=DG

25、,又DEG=60,DEG是等边三角形,EDG=60,EDG=ADC=60,EDGADG=ADCADG,ADE=CDG,在DAE与DCG中, ,DAEDCG,AE=GC,CH=CG+GH,CH=AE+EH点睛:考查了全等三角形的判定和性质、菱形的性质、旋转的性质、等边三角形的判定和性质,解题的关键是正确的作出辅助线21、(1)7、30%;(2)补图见解析;(3)105人;(3)【解析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解试

26、题解析:解:(1)本次调查的总人数为1025%=40(人),参加音乐类活动的学生人数为4017.5%=7人,参加球类活动的人数的百分比为100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P(选中一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小22、(1)10;1;(2);(3)4分钟、9分钟或

27、3分钟【解析】(1)根据速度=高度时间即可算出甲登山上升的速度;根据高度=速度时间即可算出乙在A地时距地面的高度b的值;(2)分0x2和x2两种情况,根据高度=初始高度+速度时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值综上即可得出结论【详解】(1)(10-100)20=10(米/分钟),b=312=1故答案为:10;1(2)当0x2时,y=3x;当x2时,y=1+103

28、(x-2)=1x-1当y=1x-1=10时,x=2乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0x20)当10x+100-(1x-1)=50时,解得:x=4;当1x-1-(10x+100)=50时,解得:x=9;当10-(10x+100)=50时,解得:x=3答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度时间找出y关于x的函数关系式

29、;(3)将两函数关系式做差找出关于x的一元一次方程23、(1)应安排4天进行精加工,8天进行粗加工(2)=安排1天进行精加工,9天进行粗加工,可以获得最多利润为元【解析】解:(1)设应安排天进行精加工,天进行粗加工, 根据题意得解得答:应安排4天进行精加工,8天进行粗加工.(2)精加工吨,则粗加工()吨,根据题意得=要求在不超过10天的时间内将所有蔬菜加工完,解得 又在一次函数中,随的增大而增大,当时,精加工天数为=1,粗加工天数为安排1天进行精加工,9天进行粗加工,可以获得最多利润为元.24、(1)m8,反比例函数的表达式为y;(2)当n3时,BMN的面积最大【解析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)直线y=2x+6经过点A(1,m),m=21+6=8,A(1,8),反比例函数经过点A(1,8),8=,k=8,反比例函数的解析式为y=(2)由题意,点M,N的坐标为M(,n),N(,n),0n6,0,SBMN=(|+|)n=(+)n=(n3)2+,n=3时,BMN的面积最大

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁