《2023届福建省永春县市级名校中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届福建省永春县市级名校中考三模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,小明要测量河内小岛B到河边公路l的距离,在A点测得,在C点测得,又测得米,则小岛B到公路l的距离为( )米A25BCD2一个容量为50的样本,在整理频率
2、分布时,将所有频率相加,其和是( )A50 B0.02 C0.1 D13如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:3a+b0;-1a-;对于任意实数m,a+bam2+bm总成立;关于x的方程ax2+bx+c=n-1有两个不相等的实数根其中结论正确的个数为( )A1个 B2个 C3个 D4个4甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:甲
3、步行的速度为60米/分;乙走完全程用了32分钟;乙用16分钟追上甲;乙到达终点时,甲离终点还有300米其中正确的结论有()A1个B2个C3个D4个5下列汽车标志中,不是轴对称图形的是( )ABCD6一元二次方程x23x+1=0的根的情况()A有两个相等的实数根B有两个不相等的实数根C没有实数根D以上答案都不对7如图,点A为边上任意一点,作ACBC于点C,CDAB于点D,下列用线段比表示cos的值,错误的是( )ABCD8用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A4B6C16D89将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那
4、么每个圆锥容器的底面半径为()A10cmB30cmC45cmD300cm10整数a、b在数轴上对应点的位置如图,实数c在数轴上且满足,如果数轴上有一实数d,始终满足,则实数d应满足( ).ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_12已知点P(1,2)关于x轴的对称点为P,且P在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 13有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是_14用一个半径为10cm半圆纸片
5、围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为 15因式分解:_16如图,在ABC中,AB=AC=2,BC=1点E为BC边上一动点,连接AE,作AEF=B,EF与ABC的外角ACD的平分线交于点F当EFAC时,EF的长为_三、解答题(共8题,共72分)17(8分)路边路灯的灯柱垂直于地面,灯杆的长为2米,灯杆与灯柱成角,锥形灯罩的轴线与灯杆垂直,且灯罩轴线正好通过道路路面的中心线(在中心线上).已知点与点之间的距离为12米,求灯柱的高.(结果保留根号)18(8分)数学活动小组的小颖、小明和小华利用皮尺和自制的两个直角三角板测量学校旗杆MN的高度,如示意图,ABC和ABC是他们自制的直角三角
6、板,且ABCABC,小颖和小明分别站在旗杆的左右两侧,小颖将ABC的直角边AC平行于地面,眼睛通过斜边AB观察,一边观察一边走动,使得A、B、M共线,此时,小华测量小颖距离旗杆的距离DN=19米,小明将ABC的直角边BC平行于地面,眼睛通过斜边BA观察,一边观察一边走动,使得B、A、M共线,此时,小华测量小明距离旗杆的距离EN=5米,经测量,小颖和小明的眼睛与地面的距离AD=1米,BE=1.5米,(他们的眼睛与直角三角板顶点A,B的距离均忽略不计),且AD、MN、BE均与地面垂直,请你根据测量的数据,计算旗杆MN的高度.19(8分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2
7、副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?20(8分)已知:如图,.求证:.21(8分)如图1,图2分别是某款篮球架的实物图与示意图,已知底座BC=1.5米,底座BC与支架AC所成的角ACB=60,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.3米,篮板底部支架HE与支架AF所成的角FHE=45,求篮筐D到地面的距离(精确到0.01米参考数据:1.73,1.41)22(10分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和
8、末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,求末端操作器节点到地面直线的距离.(结果保留根号)23(12分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(6,0)和点B(4,0),与y轴的交点为C(0,3)(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上是否同时存在点D和点P,使得APQ和CDO全等,若存在,求点D的坐标,若不存在,请说明理由;若DCB=CDB,CD是MN的垂直平分线,求点M的坐标24如图,ABC中,AB=AC,以AB为直径的O交BC边于点D,
9、连接AD,过D作AC的垂线,交AC边于点E,交AB 边的延长线于点F(1)求证:EF是O的切线;(2)若F=30,BF=3,求弧AD的长参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】解:过点B作BEAD于E设BE=xBCD=60,tanBCE,在直角ABE中,AE=,AC=50米,则,解得即小岛B到公路l的距离为,故选B.2、D【解析】所有小组频数之和等于数据总数,所有频率相加等于1.3、D【解析】利用抛物线开口方向得到a0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对进行判断;利用2c3和c=-3a可对进行判断;利用二次函数的性质可对进行判断;根据抛物
10、线y=ax2+bx+c与直线y=n-1有两个交点可对进行判断【详解】抛物线开口向下,a0,而抛物线的对称轴为直线x=-=1,即b=-2a,3a+b=3a-2a=a0,所以正确;2c3,而c=-3a,2-3a3,-1a-,所以正确;抛物线的顶点坐标(1,n),x=1时,二次函数值有最大值n,a+b+cam2+bm+c,即a+bam2+bm,所以正确;抛物线的顶点坐标(1,n),抛物线y=ax2+bx+c与直线y=n-1有两个交点,关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以正确故选D【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小当a0时,抛物
11、线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)抛物线与x轴交点个数由判别式确定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点4、A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题【详解】由图可得,甲步行的速度为:2404=60米/分,故正确,乙走完全程用的时间为:2400(166012)=30(分钟),故错误
12、,乙追上甲用的时间为:164=12(分钟),故错误,乙到达终点时,甲离终点距离是:2400(4+30)60=360米,故错误,故选A【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.5、C【解析】根据轴对称图形的概念求解【详解】A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误故选C【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合6、B【解析】首先确定a=1,b=-3,c=1,然后求出=b2-4ac的值,进而作出判断【详解】a=1,b=-3,c=1,=(-3)2-
13、411=50,一元二次方程x2-3x+1=0两个不相等的实数根;故选B【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数;(3)0方程没有实数根7、D【解析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案【详解】cos=.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.8、A【解析】由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8,底面半径=82【详解】解:由题意知:底面周长=8,底面半径=82=1故选A【点睛】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等
14、于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长9、A【解析】根据已知得出直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。【详解】直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形假设每个圆锥容器的地面半径为解得故答案选A.【点睛】本题考查扇形弧长的计算方法和扇形围成的圆锥底面圆的半径的计算方法。10、D【解析】根据acb,可得c的最小值是1,根据有理数的加法,可得答案【详解】由acb,得:c最小值是1,当c=1时,c+d=1+d,1+d0,解得:d1,db故选D【点睛】本题考查了实数与数
15、轴,利用acb得出c的最小值是1是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可.【详解】从中随意摸出两个球的所有可能的结果个数是12,随意摸出两个球是红球的结果个数是6,从中随意摸出两个球的概率=;故答案为:.【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比12、y=1x+1【解析】由对称得到P(1,2),再
16、代入解析式得到k的值,再根据平移得到新解析式.【详解】点P(1,2)关于x轴的对称点为P,P(1,2),P在直线y=kx+3上,2=k+3,解得:k=1,则y=1x+3,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=1x+1故答案为y=1x+1考点:一次函数图象与几何变换13、【解析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种
17、,得P=.故其概率为:【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏用到的知识点为:概率=所求情况数与总情况数之比14、5【解析】试题分析:根据图形可知圆锥的侧面展开图的弧长为2102=10(cm),因此圆锥的底面半径为102=5(cm),因此圆锥的高为:=5(cm)考点:圆锥的计算15、【解析】提公因式法和应用公式法因式分解【详解】解: 故答案为:【点睛】本题考查因式分解,要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式16、1+【解析】当AB=AC,AE
18、F=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,即可得到AEBC,依据RtCFGRtCFH,可得CH=CG=,再根据勾股定理即可得到EF的长【详解】解:如图,当AB=AC,AEF=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,AEBC,CE=BC=2,又AC=2,AE=1,EG=,CG=,作FHCD于H,CF平分ACD,FG=FH,而CF=CF,RtCFGRtCFH,CH=CG=,设EF=x,则HF=GF=x-,RtEFH中,EH2+FH2=EF2,(2+)2+(x-)2=x2,解得x=1+,故答案为1+【点睛】本题主要考查了角平分线的
19、性质,勾股定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合三、解答题(共8题,共72分)17、【解析】设灯柱BC的长为h米,过点A作AHCD于点H,过点B作BEAH于点E,构造出矩形BCHE,RtAEB,然后解直角三角形求解【详解】解:设灯柱的长为米,过点作于点过点做于点四边形为矩形,又在中,又在中,解得,(米)灯柱的高为米.18、11米【解析】过点C作CEMN于E,过点C作CFMN于F,则EFBEAD1.510.5(m),AEDN19,BFEN5,根据相似三角形的性质即可得到结论【详解】解:过点C作CEMN于E,过点C作CFMN于F
20、,则EFBEAD1.510.5(m),AEDN19,BFEN5,ABCABC,MAEBMF,AEMBFM90,AMFMBF, , MF , 答:旗杆MN的高度约为11米【点睛】本题考查了相似三角形的应用,正确的作出辅助线是解题的关键19、(1)一副乒乓球拍 28 元,一副羽毛球拍 60元(2)共 320 元【解析】整体分析:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,解得
21、:答:购买一副乒乓球拍28元,一副羽毛球拍60元.(2)528360320元答:购买5副乒乓球拍和3副羽毛球拍共320元20、见解析【解析】先通过BAD=CAE得出BAC=DAE,从而证明ABCADE,得到BC=DE【详解】证明:BAD=CAE,BAD+DAC=CAE+DAC即BAC=DAE,在ABC和ADE中,,ABCADE(SAS)BC=DE【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL21、3.05米【解析】延长FE交CB的延长线于M, 过A作AGFM于G, 解直角三角形即可得到正确结论【详解】解:如图:延长F
22、E交CB的延长线于M,过A作AGFM于G,在RtABC中,tanACB=,AB=BCtan60=1.51.73=2.595,GM=AB=2.595,在RtAGF中,FAG=FHE=45,sinFAG=,sin45=,FG=1.76,DM=FG+GMDF3.05米答:篮框D到地面的距离是3.05米【点睛】本题主要考查直角三角形和三角函数,构造合适的辅助线是本题解题的关键22、()cm.【解析】作BGCD,垂足为G,BHAF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.【详解】如图,作BGCD,垂足为G,BHAF,垂足为H,在中,BCD=60,BC=60cm,在中,BAF=4
23、5,AB=60cm,D到L的距离.【点睛】本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.23、(1)y=x2x+3;(2)点D坐标为(,0);点M(,0).【解析】(1)应用待定系数法问题可解;(2)通过分类讨论研究APQ和CDO全等由已知求点D坐标,证明DNBC,从而得到DN为中线,问题可解【详解】(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得: ,抛物线解析式为:y=-x2-x+3;(2)存在点D,使得APQ和CDO全等,当D在线段OA上,QAP=DCO,AP=OC=3时,APQ和CDO全等,tanQAP=
24、tanDCO,OD=,点D坐标为(-,0).由对称性,当点D坐标为(,0)时,由点B坐标为(4,0),此时点D(,0)在线段OB上满足条件OC=3,OB=4,BC=5,DCB=CDB,BD=BC=5,OD=BD-OB=1,则点D坐标为(-1,0)且AD=BD=5,连DN,CM,则DN=DM,NDC=MDC,NDC=DCB,DNBC,则点N为AC中点DN时ABC的中位线,DN=DM=BC=,OM=DM-OD=点M(,0)【点睛】本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识解答时,注意数形结合24、(1)见解析;(2)2.【解析】证明:(1)连接OD,AB是直径,ADB=90,即ADBC,AB=AC,AD平分BAC,OAD=CAD,OA=OD,OAD=ODA,ODA=CAD,ODAC,DEAC,ODEF,OD过O,EF是O的切线(2)ODDF,ODF=90,F=30,OF=2OD,即OB+3=2OD,而OB=OD,OD=3,AOD=90+F=90+30=120,的长度=.【点睛】本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题也考查了弧长公式