《2023届河南省洛阳市汝阳县市级名校中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届河南省洛阳市汝阳县市级名校中考三模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1已知抛物线y=(x)(x)(a为正整数)与x轴交于Ma、Na两点,以MaNa表示这两点间的距离,则M1N1+M2N2+M2018N2018的值是()ABCD2如图,PA、PB切O于A、B两点,AC是O的直径,P=40,则ACB度数是()A50B6
2、0C70D803已知点,与点关于轴对称的点的坐标是( )ABCD4下列各式计算正确的是( )ABCD5已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )A20cm2B20cm2C10cm2D5cm26上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()ABCD7若ab0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()ABCD8在平
3、面直角坐标系中,将点P(4,3)绕原点旋转90得到P1,则P1的坐标为()A(3,4)或(3,4)B(4,3)C(4,3)或(4,3)D(3,4)9如图1,在ABC中,D、E分别是AB、AC的中点,将ADE沿线段DE向下折叠,得到图1下列关于图1的四个结论中,不一定成立的是()A点A落在BC边的中点BB+1+C=180CDBA是等腰三角形DDEBC10如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A5B10C10D15二、填空题(本大题共6个小题,每小题3分,共18分)11已知a+b=4,a-b
4、=3,则a2-b2=_12如图,在ABC中,CABC,BEAC,垂足为点E,BDE是等边三角形,若AD4,则线段BE的长为_133的倒数是_14函数中,自变量的取值范围是_15在RtABC中,A是直角,AB=2,AC=3,则BC的长为_16在平面直角坐标系xOy中,点A(4,3)为O上一点,B为O内一点,请写出一个符合条件要求的点B的坐标_三、解答题(共8题,共72分)17(8分)对于平面直角坐标系xOy中的点P和直线m,给出如下定义:若存在一点P,使得点P到直线m的距离等于1,则称P为直线m的平行点(1)当直线m的表达式为yx时,在点,中,直线m的平行点是_;O的半径为,点Q在O上,若点Q为
5、直线m的平行点,求点Q的坐标(2)点A的坐标为(n,0),A半径等于1,若A上存在直线的平行点,直接写出n的取值范围18(8分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,2)求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论19(8分)观察猜想:在RtABC中,BAC=90,AB=AC,点D在边BC上,连接AD,把ABD绕点A逆时针旋转90,点D落在点E处,如图所示,则线段CE和线段BD的数量关系是 ,位置关系是 探究证明:在(1)的条件下,
6、若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图中画出图形,并证明你的判断拓展延伸:如图,BAC90,若ABAC,ACB=45,AC=,其他条件不变,过点D作DFAD交CE于点F,请直接写出线段CF长度的最大值20(8分) “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有
7、充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m%小时,求m的值21(8分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?22(10分)已知:如图,AB=AE,1=2,B=E求证:BC=ED23(12分)为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费若用户的月用水量不超过15吨,每吨收水费4元;用户的月用水量超过
8、15吨,超过15吨的部分,按每吨6元收费(I)根据题意,填写下表:月用水量(吨/户)41016应收水费(元/户) 40 (II)设一户居民的月用水量为x吨,应收水费y元,写出y关于x的函数关系式;(III)已知用户甲上个月比用户乙多用水6吨,两户共收水费126元,求他们上个月分别用水多少吨?24在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表 等级得分x(分)频数(人)A95x1004B90x95mC85x90nD80x8524E75x8
9、08F70x754请你根据图表中的信息完成下列问题:(1)本次抽样调查的样本容量是 其中m ,n (2)扇形统计图中,求E等级对应扇形的圆心角的度数;(3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?(4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】代入y=0求出x的值,进而可得出MaNa=-,将其代入M1N1+M2N2+M2018N2018中即可求出结论【详解】解:当y=0时,有(x-)
10、(x-)=0,解得:x1=,x2=,MaNa=-,M1N1+M2N2+M2018N2018=1-+-+-=1-=故选C【点睛】本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出MaNa的值是解题的关键2、C【解析】连接BC,根据题意PA,PB是圆的切线以及可得的度数,然后根据,可得的度数,因为是圆的直径,所以,根据三角形内角和即可求出的度数。【详解】连接BC.PA,PB是圆的切线在四边形中,所以是直径故答案选C.【点睛】本题主要考察切线的性质,四边形和三角形的内角和以及圆周角定理。3、C【解析】根据关于y轴对称的点,纵坐标相
11、同,横坐标互为相反数,可得答案【详解】解:点,与点关于轴对称的点的坐标是,故选:C【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数4、B【解析】A选项中,不是同类二次根式,不能合并,本选项错误;B选项中,本选项正确;C选项中,而不是等于,本选项错误;D选项中,本选项错误;故选B.5、C【解析】圆锥的侧面积=底面周长母线长2,把相应数值代入,圆锥的侧面积=2252=10故答案为C6、B【解析】分析:根据题意出教室,离门口近,
12、返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选B点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键7、D【解析】根据ab0及正比例函数与反比例函数图象的特点,可以从a0,b0和a0,b0两方面分类讨论得出答案【详解】解:ab0,分两种情况:(1)当a0,b0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a0,b0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合故选D【点睛】本题主要考查了反比
13、例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题8、A【解析】分顺时针旋转,逆时针旋转两种情形求解即可.【详解】解:如图,分两种情形旋转可得P(3,4),P(3,4),故选A.【点睛】本题考查坐标与图形变换旋转,解题的关键是利用空间想象能力.9、A【解析】根据折叠的性质明确对应关系,易得A=1,DE是ABC的中位线,所以易得B、D答案正确,D是AB中点,所以DB=DA,故C正确【详解】根据题意可知DE是三角形ABC的中位线,所以DEBC;B+1+C=180;BD=AD,DBA是等腰三角形故只有A错,BACA故选A【点睛】主要考查了三角形的内角和外角之间的关系以及等腰三角形的
14、性质还涉及到翻折变换以及中位线定理的运用(1)三角形的外角等于与它不相邻的两个内角和(1)三角形的内角和是180度求角的度数常常要用到“三角形的内角和是180这一隐含的条件通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力解答此类题最好动手操作10、B【解析】作点E关于BC的对称点E,连接EG交BC于点F,此时四边形EFGH周长取最小值,过点G作GGAB于点G,如图所示,AE=CG,BE=BE,EG=AB=10,GG=AD=5,EG=,C四边形EFGH=2EG=10,故选B【点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键二、填空题(本大题共6个小题
15、,每小题3分,共18分)11、1【解析】a2-b2=(a+b)(a-b)=43=1故答案为:1.考点:平方差公式12、1【解析】本题首先由等边三角形的性质及垂直定义得到DBE=60,BEC=90,再根据等腰三角形的性质可以得出EBC=ABC-60=C-60,最后根据三角形内角和定理得出关系式C-60+C=90解出C,推出AD=DE,于是得到结论【详解】BDE是正三角形,DBE=60;在ABC中,C=ABC,BEAC,C=ABC=ABE+EBC,则EBC=ABC-60=C-60,BEC=90;EBC+C=90,即C-60+C=90,解得C=75,ABC=75,A=30,AED=90-DEB=30
16、,A=AED,DE=AD=1,BE=DE=1,故答案为:1【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果13、【解析】乘积为1的两数互为相反数,即a的倒数即为,符号一致【详解】3的倒数是 答案是14、x1【解析】解:有意义,x-10,x1;故答案是:x115、 【解析】根据勾股定理解答即可【详解】在RtABC中,A是直角,AB2,AC3,BC,故答案为:【点睛】此题考查勾股定理,关键是根据勾股定理解答16、(2,2)【解析】连结OA,根据勾股定理可求OA,再根据点与圆的位置关系可得一个符合要求的点B的坐标【
17、详解】如图,连结OA,OA5,B为O内一点,符合要求的点B的坐标(2,2)答案不唯一故答案为:(2,2)【点睛】考查了点与圆的位置关系,坐标与图形性质,关键是根据勾股定理得到OA的长三、解答题(共8题,共72分)17、(1),;,;(2)【解析】(1)根据平行点的定义即可判断;分两种情形:如图1,当点B在原点上方时,作OHAB于点H,可知OH=1.如图2,当点B在原点下方时,同法可求;(2)如图,直线OE的解析式为,设直线BC/OE交x轴于C,作CDOE于D. 设A与直线BC相切于点F,想办法求出点A的坐标,再根据对称性求出左侧点A的坐标即可解决问题;【详解】解:(1)因为P2、P3到直线yx
18、的距离为1,所以根据平行点的定义可知,直线m的平行点是,故答案为,解:由题意可知,直线m的所有平行点组成平行于直线m,且到直线m的距离为1的直线设该直线与x轴交于点A,与y轴交于点B如图1,当点B在原点上方时,作OHAB于点H,可知OH1由直线m的表达式为yx,可知OABOBA45所以直线AB与O的交点即为满足条件的点Q连接,作轴于点N,可知在中,可求所以在中,可求所以所以点的坐标为同理可求点的坐标为如图2,当点B在原点下方时,可求点的坐标为点的坐标为,综上所述,点Q的坐标为,(2)如图,直线OE的解析式为,设直线BCOE交x轴于C,作CDOE于D当CD1时,在RtCOD中,COD60,设A与
19、直线BC相切于点F,在RtACE中,同法可得,根据对称性可知,当A在y轴左侧时,观察图象可知满足条件的N的值为:【点睛】此题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题18、(1)(2)1x0或x1(3)四边形OABC是平行四边形;理由见解析【解析】(1)设反比例函数的解析式为(k0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CBOA且CB=,判断出四边
20、形OABC是平行四边形,再证明OA=OC【详解】解:(1)设反比例函数的解析式为(k0)A(m,2)在y=2x上,2=2m,解得m=1A(1,2)又点A在上,解得k=2,反比例函数的解析式为(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为1x0或x1(3)四边形OABC是菱形证明如下: A(1,2),由题意知:CBOA且CB=,CB=OA四边形OABC是平行四边形C(2,n)在上,C(2,1)OC=OA平行四边形OABC是菱形19、(1)CE=BD,CEBD(2)(1)中的结论仍然成立理由见解析;(3).【解析】分析:(1)线段AD绕点A逆时针旋转90得到AE,根据旋转的性
21、质得到AD=AE,BAD=CAE,得到BADCAE,CE=BD,ACE=B,得到BCE=BCA+ACE=90,于是有CE=BD,CEBD(2)证明的方法与(1)类似(3)过A作AMBC于M,ENAM于N,根据旋转的性质得到DAE=90,AD=AE,利用等角的余角相等得到NAE=ADM,易证得RtAMDRtENA,则NE=MA,由于ACB=45,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到DCF=90,由此得到RtAMDRtDCF,得,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值详解:(1)AB=AC,BAC=90,线段AD绕点A
22、逆时针旋转90得到AE,AD=AE,BAD=CAE,BADCAE,CE=BD,ACE=B,BCE=BCA+ACE=90,BDCE;故答案为CE=BD,CEBD(2)(1)中的结论仍然成立理由如下:如图,线段AD绕点A逆时针旋转90得到AE,AE=AD,DAE=90,AB=AC,BAC=90CAE=BAD,ACEABD,CE=BD,ACE=B,BCE=90,即CEBD,线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CEBD(3)如图3,过A作AMBC于M,ENAM于N,线段AD绕点A逆时针旋转90得到AEDAE=90,AD=AE,NAE=ADM,易证得RtAMDRtENA,NE=AM
23、,ACB=45,AMC为等腰直角三角形,AM=MC,MC=NE,AMBC,ENAM,NEMC,四边形MCEN为平行四边形,AMC=90,四边形MCEN为矩形,DCF=90,RtAMDRtDCF,设DC=x,ACB=45,AC=,AM=CM=1,MD=1-x,CF=-x2+x=-(x-)2+,当x=时有最大值,CF最大值为点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质20、(1)1600千米;(2)1【解析】试题分析:(1)利用“从重庆到上海比原铁路全程缩短了320
24、千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;(2)根据题意得出方程(80+120)(1-m%)(8+m%)=1600,进而解方程求出即可试题解析:(1)设原时速为xkm/h,通车后里程为ykm,则有: ,解得: 答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:(80+120)(1m%)(8+m%)=1600,解得:m1=1,m2=0(不合题意舍去),答:m的值为121、商人盈利的可能性大【解析】试题分析:根据几何概率的定义,面积比即概率图中A
25、,B,C所占的面积与总面积之比即为A,B,C各自的概率,算出相应的可能性,乘以钱数,比较即可试题解析:商人盈利的可能性大商人收费:80280(元),商人奖励:80380160(元),因为8060,所以商人盈利的可能性大22、证明见解析.【解析】由1=2可得CAB =DAE,再根据ASA证明ABCAED,即可得出答案.【详解】1=2,1+BAD=2+BAD,CAB=DAE,在ABC与AED中,B=E,AB=AE,CAB=DAE,ABCAED,BC=ED.23、()16;66;()当x15时,y=4x;当x15时,y=6x30;()居民甲上月用水量为18吨,居民乙用水12吨【解析】()根据题意计算
26、即可;()根据分段函数解答即可;()根据题意,可以分段利用方程或方程组解决用水量问题【详解】解:()当月用水量为4吨时,应收水费=44=16元;当月用水量为16吨时,应收水费=154+16=66元;故答案为16;66;()当x15时,y=4x;当x15时,y=154+(x15)6=6x30;()设居民甲上月用水量为X吨,居民乙用水(X6)吨由题意:X615且X15时,4(X6)+154+(X15)6=126X=18,居民甲上月用水量为18吨,居民乙用水12吨【点睛】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题注意在实际问题中,利用方程或方程组是解决问题的常用方法24、(1)
27、80,12,28;(2)36;(3)140人;(4)【解析】(1)用D组的频数除以它所占的百分比得到样本容量;用样本容量乘以B组所占的百分比得到m的值,然后用样本容量分别减去其它各组的频数即可得到n的值;(2)用E组所占的百分比乘以360得到的值;(3)利用样本估计整体,用700乘以A、B两组的频率和可估计体育测试成绩在A、B两个等级的人数;(4)画树状图展示所有12种等可能的结果数,再找出恰好抽到甲和乙的结果数,然后根据概率公式求解【详解】(1)2430%=80,所以样本容量为80;m=8015%=12,n=801242484=28;故答案为80,12,28;(2)E等级对应扇形的圆心角的度数=360=36;(3)700=140,所以估计体育测试成绩在A、B两个等级的人数共有140人;(4)画树状图如下:共12种等可能的结果数,其中恰好抽到甲和乙的结果数为2,所以恰好抽到甲和乙的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率也考查了统计图