《2023届湖北省云梦县市级名校中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届湖北省云梦县市级名校中考三模数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知二次函数的图象如图所示,若,是这个函数图象上的三点,则的大小关系是( )ABCD2下列二次根式中,与是同类二次根式的是( )ABCD3如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,
2、则HM=()AB1CD4若,代数式的值是A0BC2D5某商品的进价为每件元当售价为每件元时,每星期可卖出件,现需降价处理,为占有市场份额,且经市场调查:每降价元,每星期可多卖出件现在要使利润为元,每件商品应降价( )元A3B2.5C2D56若点都是反比例函数的图象上的点,并且,则下列各式中正确的是( )ABCD7用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是()ABCD8一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A10%x330B(110%)x330C(110%)2x330D(1+10%)x3309如图,在ABC中,C=90,B
3、=10,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D,下列四个结论:AD是BAC的平分线;ADC=60;点D在AB的中垂线上;SACD:SACB=1:1其中正确的有()A只有B只有C只有D10如图,直线mn,在某平面直角坐标系中,x轴m,y轴n,点A的坐标为(4,2),点B的坐标为(2,4),则坐标原点为( )AO1BO2CO3DO4二、填空题(共7小题,每小题3分,满分21分)11比较大小:_1(填“”或“”或“”)12如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M
4、处测得塔尖点A的仰角AMB为22.5,沿射线MB方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A的俯角ANB为45,则电视塔AB的高度为_米(结果保留根号)13圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_14甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_(填“甲”或“乙”)15分解因式:a2-2ab+b2-1=_16如图,平行于x轴的直线AC分别交抛物线y1=x2(x0)与y2=(x0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DEAC,交y2于点E,则 =_17若正n边形的
5、内角为,则边数n为_.三、解答题(共7小题,满分69分)18(10分)解不等式组,并写出该不等式组的最大整数解19(5分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且,CD=400米,.求道路AB段的长;(精确到1米)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:,)20(8分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技
6、,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图)请回答以下问题:(1)该班学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角是 度(2)利用样本估计该校初三学生选择“中技”观点的人数(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答)21(10分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面
7、雷达站处测得的距离是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.40.67,cos42.40.74,tan42.40.905,sin45.50.71,cos45.50.70,tan45.51.02)()求发射台与雷达站之间的距离;()求这枚火箭从到的平均速度是多少(结果精确到0.01)?22(10分)在平面直角坐标系中,已知抛物线经过A(4,0),B(0,4),C(2,0)三点(1)求抛物线解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,MOA的面积为S求S关于m的函数关系式,并求出当m为何值时,S有最大值,这个最大值是多少?(3)若点Q是直线y=x上的
8、动点,过Q做y轴的平行线交抛物线于点P,判断有几个Q能使以点P,Q,B,O为顶点的四边形是平行四边形的点,直接写出相应的点Q的坐标23(12分)某市旅游部门统计了今年“五一”放假期间该市A、B、C、D四个旅游景区的旅游人数,并绘制出如图所示的条形统计图和扇形统计图,根据图中的信息解答下列问题:(1)求今年“五一”放假期间该市这四个景点共接待游客的总人数;(2)扇形统计图中景点A所对应的圆心角的度数是多少,请直接补全条形统计图;(3)根据预测,明年“五一”放假期间将有90万游客选择到该市的这四个景点旅游,请你估计有多少人会选择去景点D旅游?24(14分)某公司10名销售员,去年完成的销售额情况如
9、表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】先求出二次函数的对称轴,结合二次函数的增减性即可判断【详解】解:二次函数的对称轴为直线,抛物线开口向下,当时,y随x增大而增大,故答案为:A【点睛】本题考查了根据自变量的大小,比较函数值的大小,解题的关键是熟悉二次函数的增减性2、C【解析】根据二次根式
10、的性质把各个二次根式化简,根据同类二次根式的定义判断即可【详解】A|a|与不是同类二次根式;B与不是同类二次根式;C2与是同类二次根式;D与不是同类二次根式故选C【点睛】本题考查了同类二次根式的定义,一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式3、D【解析】由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到BAC=30,求得ACBE,推出C在对角线AH上,得到A,C,H共线,于是得到结论【详解】如图,连接AC交BE于点O,将矩形ABCD绕点B按顺时针方向旋转后得到
11、矩形EBGF,AB=BE,四边形AEHB为菱形,AE=AB,AB=AE=BE,ABE是等边三角形,AB=3,AD=,tanCAB=,BAC=30,ACBE,C在对角线AH上,A,C,H共线,AO=OH=AB=,OC=BC=,COB=OBG=G=90,四边形OBGM是矩形,OM=BG=BC=,HM=OHOM=,故选D【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.4、D【解析】由可得,整体代入到原式即可得出答案【详解】解:,则原式故选:D【点睛】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则及代数式的
12、求值是解题的关键5、A【解析】设售价为x元时,每星期盈利为6125元,那么每件利润为(x-40),原来售价为每件60元时,每星期可卖出300件,所以现在可以卖出300+20(60-x)件,然后根据盈利为6120元即可列出方程解决问题【详解】解:设售价为x元时,每星期盈利为6120元,由题意得(x-40)300+20(60-x)=6120,解得:x1=57,x2=1,由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=1每件商品应降价60-57=3元故选:A【点睛】本题考查了一元二次方程的应用此题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键此题要注意判断所求的解是否符
13、合题意,舍去不合题意的解6、B【解析】解:根据题意可得:反比例函数处于二、四象限,则在每个象限内为增函数,且当x0时y0,当x0时,y0,.7、A【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A8、D【解析】解:设上个月卖出x双,根据题意得:(1+10%)x=1故选D9、D【解析】根据作图过程可判定AD是BAC的角平分线;利用角平分线的定义可推知CAD10,则由直角三角形的性质来求ADC的度数;利用等角对等边可以证得ADB是等腰三角形,由等腰三角形的“三合一”性质可以证明点D在AB的中垂线上;利用10角所对的直角边是斜边的一半,三角形的面积计算公式来求两个三角形面积之比.
14、【详解】根据作图过程可知AD是BAC的角平分线,正确;如图,在ABC中,C90,B10,CAB60,又AD是BAC的平分线,12CAB10,190260,即ADC60,正确;1B10,ADBD,点D在AB的中垂线上,正确;如图,在直角ACD中,210,CDAD,BCCDBDADADAD,SDACACCDACAD.SABCACBCACADACAD,SDAC:SABCACAD:ACAD1:1,正确.故选D.【点睛】本题主要考查尺规作角平分线、角平分线的性质定理、三角形的外角以及等腰三角形的性质,熟练掌握有关知识点是解答的关键.10、A【解析】试题分析:因为A点坐标为(4,2),所以,原点在点A的右
15、边,也在点A的下边2个单位处,从点B来看,B(2,4),所以,原点在点B的左边,且在点B的上边4个单位处如下图,O1符合考点:平面直角坐标系二、填空题(共7小题,每小题3分,满分21分)11、【解析】0.62,0.621,1;故答案为12、【解析】解:如图,连接AN,由题意知,BMAA,BA=BA,AN=AN,ANB=ANB=45,AMB=22.5,MAN=ANBAMB=22.5=AMN,AN=MN=200米,在RtABN中,ANB=45,AB=AN=(米),故答案为点睛:此题是解直角三角形的应用仰角和俯角,主要考查了垂直平分线的性质,等腰三角形的性质,解本题的关键是求出ANB=4513、15
16、p【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解圆锥的侧面积=235=15故答案为15考点:圆锥的计算14、甲【解析】乙所得环数的平均数为:=5,S2=+=+=16.4,甲的方差乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.15、 (ab1)(ab1)【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2-2ab+b2可组成完全平方公式,再和最后一项用平方差公式分解【详解】a2-2ab+b2-1,=(a-b)2-1,=(a-b+1)(
17、a-b-1)【点睛】本题考查用分组分解法进行因式分解难点是采用两两分组还是三一分组本题前三项可组成完全平方公式,可把前三项分为一组,分解一定要彻底16、3【解析】首先设点B的横坐标,由点B在抛物线y1=x2(x0)上,得出点B的坐标,再由平行,得出A和C的坐标,然后由CD平行于y轴,得出D的坐标,再由DEAC,得出E的坐标,即可得出DE和AB,进而得解.【详解】设点B的横坐标为,则平行于x轴的直线AC又CD平行于y轴又DEAC=3【点睛】此题主要考查抛物线中的坐标求解,关键是利用平行的性质.17、9【解析】分析:根据正多边形的性质:正多边形的每个内角都相等,结合多边形内角和定理列出方程进行解答
18、即可.详解:由题意可得:140n=180(n-2),解得:n=9.故答案为:9.点睛:本题解题的关键是要明白以下两点:(1)正多边形的每个内角相等;(2)n边形的内角和=180(n-2).三、解答题(共7小题,满分69分)18、2,1,0【解析】分析:先解不等式,去括号,移项,系数化为1,再解不等式,取分母,移项,然后找出不等式组的解集本题解析:,解不等式得,x2,解不等式得,x1,不等式组的解集为2x1.不等式组的最大整数解为x=0,19、 (1)AB1395 米;(2)没有超速【解析】(1)先根据tanADC2求出AC,再根据ABC35结合正弦值求解即可(2)根据速度的计算公式求解即可.【
19、详解】解:(1)ACBC,C90,tanADC2,CD400,AC800,在RtABC中,ABC35,AC800,AB1395 米;(2)AB1395,该车的速度55.8km/h60千米/时,故没有超速【点睛】此题重点考察学生对三角函数值的实际应用,熟练掌握三角函数值的实际应用是解题的关键.20、(4)A高中观点4 446;(4)456人;(4)【解析】试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估
20、计该校初三学生选择“中技”观点的人数;(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解试题解析:(4)该班学生选择A高中观点的人数最多,共有60%50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%460=446;(4)80044%=456(人),估计该校初三学生选择“中技”观点的人数约是456人;(4)该班选择“就业”观点的人数=50(4-60%-44%)=508%=4(人),则该班有4位女同学和4位男生选择“就业”观点,列表如下:共有44种等可能的结果数,
21、其中出现4女的情况共有4种所以恰好选到4位女同学的概率=考点:4列表法与树状图法;4用样本估计总体;4扇形统计图21、 ()发射台与雷达站之间的距离约为;()这枚火箭从到的平均速度大约是.【解析】()在RtACD中,根据锐角三角函数的定义,利用ADC的余弦值解直角三角形即可;()在RtBCD和RtACD中,利用BDC的正切值求出BC的长,利用ADC的正弦值求出AC的长,进而可得AB的长,即可得答案.【详解】()在中,0.74,.答:发射台与雷达站之间的距离约为.()在中,.在中,.答:这枚火箭从到的平均速度大约是.【点睛】本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.22、
22、(1)y=x2+x4;(2)S关于m的函数关系式为S=m22m+8,当m=1时,S有最大值9;(3)Q坐标为(4,4)或(2+2,22)或(22,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形【解析】(1)设抛物线解析式为y ax2 bx c,然后把点A、B、C的坐标代入函数解析式,利用待定系数法求解即可;(2)利用抛物线的解析式表示出点M的纵坐标,从而得到点M到x轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;(3)利用直线与抛物线的解析式表示出点P、Q的坐标,然后求出PQ的长度,再根据平行四边形的对边相等列出算式,然
23、后解关于x的一元二次方程即可得解.【详解】解:(1)设抛物线解析式为y=ax2+bx+c,抛物线经过A(4,0),B(0,4),C(2,0),解得,抛物线解析式为y=x2+x4;(2)点M的横坐标为m,点M的纵坐标为m2+m4,又A(4,0),AO=0(4)=4,S=4|m2+m4|=(m2+2m8)=m22m+8,S=(m2+2m8)=(m+1)2+9,点M为第三象限内抛物线上一动点,当m=1时,S有最大值,最大值为S=9;故答案为S关于m的函数关系式为S=m22m+8,当m=1时,S有最大值9;(3)点Q是直线y=x上的动点,设点Q的坐标为(a,a),点P在抛物线上,且PQy轴,点P的坐标
24、为(a,a2+a4),PQ=a(a2+a4)=a22a+4,又OB=0(4)=4,以点P,Q,B,O为顶点的四边形是平行四边形,|PQ|=OB,即|a22a+4|=4,a22a+4=4时,整理得,a2+4a=0,解得a=0(舍去)或a=4,a=4,所以点Q坐标为(4,4),a22a+4=4时,整理得,a2+4a16=0,解得a=22,所以点Q的坐标为(2+2,22)或(22,2+2),综上所述,Q坐标为(4,4)或(2+2,22)或(22,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形【点睛】本题是对二次函数的综合考查有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平
25、行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.23、(1)60人;(2)144,补全图形见解析;(3)15万人.【解析】(1)用B景点人数除以其所占百分比可得;(2)用360乘以A景点人数所占比例即可,根据各景点人数之和等于总人数求得C的人数即可补全条形图;(3)用总人数乘以样本中D景点人数所占比例【详解】(1)今年“五一”放假期间该市这四个景点共接待游客的总人数为1830%=60万人;(2)扇形统计图中景点A所对应的圆心角的度数是360=144,C景点人数为60(24+18+10)=8万人,补全图形如下:(3)估计选择去景点D旅游的
26、人数为90=15(万人)【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小24、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元【解析】(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数(2)根据平均数,中位数,众数的意义回答【详解】解:(1)平均数=(31+43+52+61+71+81+101)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元)(2)今年每个销售人员统一的销售标准应是5万元理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成因此把5万元定为标准比较合理【点睛】本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.