《2023届潮州市潮安县中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届潮州市潮安县中考数学押题试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1郑州地铁号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()ABCD2下面几何的主视图是( )ABCD3关于x的不等式x-b0恰有两个负整数解,则b
2、的取值范围是A B C D 4不等式组的解集是()A1x4Bx1或x4C1x4D1x45已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方下列结论:;其中正确结论的个数是( )个A4个B3个C2个D1个6在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是()A平均数为160B中位数为158C众数为158D方差为20.37如图所示:有理数在数轴上的对应点,则下列式子中错误的是( )ABCD8下列运算正确的是()A2a2+3a2=5a4B()2=4C(a+b)(ab)=a2b2D8ab4a
3、b=2ab9如图,在ABC中,AB=AC,BAC=90,直角EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:APECPF;AE=CF;EAF是等腰直角三角形;SABC=2S四边形AEPF,上述结论正确的有( )A1个B2个C3个D4个10关于x的一元二次方程x24x+k=0有两个相等的实数根,则k的值是( )A2B2C4D4二、填空题(本大题共6个小题,每小题3分,共18分)11有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、6点的标记,掷一次骰子,向上的一面出现的点数是素数的概率是_12如图,RtABC的直角边BC在x轴上,直线y=x经过直角顶点B
4、,且平分ABC的面积,BC=3,点A在反比例函数y=图象上,则k=_13如图,点D、E、F分别位于ABC的三边上,满足DEBC,EFAB,如果AD:DB=3:2,那么BF:FC=_14计算:_15如图,直线lx轴于点P,且与反比例函数y1(x0)及y2(x0)的图象分别交于点A,B,连接OA,OB,已知OAB的面积为2,则k1k2_.16若xay与3x2yb是同类项,则ab的值为_三、解答题(共8题,共72分)17(8分)如图,四边形AOBC是正方形,点C的坐标是(4,0)正方形AOBC的边长为 ,点A的坐标是 将正方形AOBC绕点O顺时针旋转45,点A,B,C旋转后的对应点为A,B,C,求点
5、A的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当OPQ为等腰三角形时,求出t的值(直接写出结果即可)18(8分)将二次函数的解析式化为的形式,并指出该函数图象的开口方向、顶点坐标和对称轴19(8分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆如图所示,已知:I是ABC的BC边上的旁切圆,E、F分别是切点,ADIC于点D(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论(2
6、)设AB=AC=5,BC=6,如果DIE和AEF的面积之比等于m,试作出分别以 , 为两根且二次项系数为6的一个一元二次方程20(8分)解方程:2(x-3)=3x(x-3)21(8分)如图,在ABC中,C=90,AD平分CAB,交CB于点D,过点D作DEAB,于点E求证:ACDAED;若B=30,CD=1,求BD的长22(10分)观察下列等式:15+4=32;26+4=42;37+4=52;(1)按照上面的规律,写出第个等式:_;(2)模仿上面的方法,写出下面等式的左边:_=502;(3)按照上面的规律,写出第n个等式,并证明其成立23(12分)如图,四边形 ABCD 中,对角线 AC、BD
7、相交于点 O,若 AB,求证:四边形 ABCD 是正方形24灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生20162017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图请根据图中提供的信息,回答下列问题:(1)a= %,并补全条形图(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根
8、据概率公式计算可得【详解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,恰好选择从同一个口进出的概率为=,故选C【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比2、B【解析】主视图是从物体正面看所得到的图形【详解】解:从几何体正面看故选B【点睛】本题考查了三视图的知识,主视
9、图是从物体的正面看得到的视图3、A【解析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x的不等式x-b0恰有两个负整数解,可得x的负整数解为-1和-2 综合上述可得故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.4、D【解析】试题分析:解不等式可得:x1,解不等式可得:x4,则不等式组的解为1x4,故选D5、B【解析】分析:根据已知画出图象,把x=2代入得:4a2b+c=0,把x=1代入得:y=ab+c0,根据不等式的两边都乘以a(a2a,由4a2b+c=0得而0c0.详解:根据二次函数y=ax2+bx+c的图象与x轴交于点(2,
10、0)、(x1,0),且1x10,如图A点,错误;(2,0)、(x1,0),且1x1,取符合条件1x12的任何一个x1,2x12,由一元二次方程根与系数的关系知 不等式的两边都乘以a(a2a, 2a+c0,正确;由4a2b+c=0得 而0c2, 12ab0,正确.所以三项正确故选B.点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与轴的交点,属于常考题型.6、D【解析】解:A平均数为(158+160+154+158+170)5=160,正确,故本选项不符合题意;B按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158
11、,故中位数为158,正确,故本选项不符合题意;C数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D这组数据的方差是S2=(154160)2+2(158160)2+(160160)2+(170160)2=28.8,错误,故本选项符合题意故选D点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大7、C【解析】从数轴上可以看出a、b都是负数,且ab,由此逐项分析得出结论即可【详解】由数轴可知:ab0,A、两数相乘,同号得正,ab0是正确的;B、同号相加,取相同的符号,a+b0是正确的;C、ab0,故选项是错误的;D、a-b=a+(-b)取a的符号
12、,a-b0是正确的故选:C【点睛】此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答.8、B【解析】根据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答【详解】A. 2a2+3a2=5a2,故本选项错误;B. ()-2=4,正确;C. (a+b)(ab)=a22abb2,故本选项错误;D. 8ab4ab=2,故本选项错误.故答案选B.【点睛】本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则.9、C【解析】利用“角边角”证明APE和CPF全等,根据全等三
13、角形的可得AE=CF,再根据等腰直角三角形的定义得到EFP是等腰直角三角形,根据全等三角形的面积相等可得APE的面积等于CPF的面积相等,然后求出四边形AEPF的面积等于ABC的面积的一半【详解】AB=AC,BAC=90,点P是BC的中点,APBC,AP=PC,EAP=C=45,APF+CPF=90,EPF是直角,APF+APE=90,APE=CPF,在APE和CPF中,APECPF(ASA),AE=CF,故正确;AEPCFP,同理可证APFBPE,EFP是等腰直角三角形,故错误;APECPF,SAPE=SCPF,四边形AEPF=SAEP+SAPF=SCPF+SBPE=SABC故正确,故选C【
14、点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出APE=CPF,从而得到APE和CPF全等是解题的关键,也是本题的突破点10、C【解析】对于一元二次方程a+bx+c=0,当=-4ac=0时,方程有两个相等的实数根.即16-4k=0,解得:k=4.考点:一元二次方程根的判别式二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】先判断掷一次骰子,向上的一面的点数为素数的情况,再利用概率公式求解即可【详解】解:掷一次这枚骰子,向上的一面的点数为素数的有2,3,5共3种情况,掷一次这枚骰子,向上的一面的点数为素数的概率是:故答案为:【点睛】本题考
15、查了求简单事件的概率,根据题意判断出素数的个数是解题的关键.12、1【解析】分析:根据题意得出点B的坐标,根据面积平分得出点D的坐标,利用三角形相似可得点A的坐标,从而求出k的值详解:根据一次函数可得:点B的坐标为(1,0), BD平分ABC的面积,BC=3点D的横坐标1.5, 点D的坐标为, DE:AB=1:1, 点A的坐标为(1,1), k=11=1点睛:本题主要考查的是反比例函数的性质以及三角形相似的应用,属于中等难度的题型得出点D的坐标是解决这个问题的关键13、3:2【解析】因为DEBC,所以,因为EFAB,所以,所以,故答案为: 3:2.14、【解析】原式= =.故答案为:.15、2
16、【解析】试题分析:反比例函数(x1)及(x1)的图象均在第一象限内,1,1APx轴,SOAP=,SOBP=,SOAB=SOAPSOBP=2,解得:=2故答案为216、2【解析】试题解析:xay与3x2yb是同类项,a=2,b=1,则ab=2.三、解答题(共8题,共72分)17、(1)4,;(2)旋转后的正方形与原正方形的重叠部分的面积为;(3).【解析】(1)连接AB,根据OCA为等腰三角形可得AD=OD的长,从而得出点A的坐标,则得出正方形AOBC的面积;(2)根据旋转的性质可得OA的长,从而得出AC,AE,再求出面积即可;(3)根据P、Q点在不同的线段上运动情况,可分为三种列式当点P、Q分
17、别在OA、OB时,当点P在OA上,点Q在BC上时,当点P、Q在AC上时,可方程得出t【详解】解:(1)连接AB,与OC交于点D,四边形是正方形,OCA为等腰Rt,AD=OD=OC=2,点A的坐标为.4,.(2)如图 四边形是正方形, ,. 将正方形绕点顺时针旋转, 点落在轴上. 点的坐标为.,. 四边形,是正方形,.,., .旋转后的正方形与原正方形的重叠部分的面积为.(3)设t秒后两点相遇,3t=16,t=当点P、Q分别在OA、OB时,,OP=t,OQ=2t不能为等腰三角形当点P在OA上,点Q在BC上时如图2,当OQ=QP,QM为OP的垂直平分线,OP=2OM=2BQ,OP=t,BQ=2t-
18、4,t=2(2t-4),解得:t=当点P、Q在AC上时,不能为等腰三角形综上所述,当时是等腰三角形【点睛】此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大18、开口方向:向上;点坐标:(-1,-3);称轴:直线.【解析】将二次函数一般式化为顶点式,再根据a的值即可确定该函数图像的开口方向、顶点坐标和对称轴【详解】解:,开口方向:向上,顶点坐标:(-1,-3),对称轴:直线.【点睛】熟练掌握将一般式化为顶点式是解题关键.19、 (1) D、E、F三点是同在一条直线上(2) 6x213x+6=1【解析】(1)利用切线长定理及梅氏定理即可求证;(2)利用相似
19、和韦达定理即可求解.解:(1)结论:D、E、F三点是同在一条直线上 证明:分别延长AD、BC交于点K,由旁切圆的定义及题中已知条件得:AD=DK,AC=CK,再由切线长定理得:AC+CE=AF,BE=BF, KE=AF,由梅涅劳斯定理的逆定理可证,D、E、F三点共线,即D、E、F三点共线 (2)AB=AC=5,BC=6,A、E、I三点共线,CE=BE=3,AE=4,连接IF,则ABEAIF,ADICEI,A、F、I、D四点共圆 设I的半径为r,则:,即,由AEFDEI得:,因此,由韦达定理可知:分别以、为两根且二次项系数为6的一个一元二次方程是6x213x+6=1 点睛:本是一道关于圆的综合题
20、.正确分析图形并应用图形的性质是解题的关键.20、.【解析】先进行移项,在利用因式分解法即可求出答案.【详解】,移项得:,整理得:,或,解得:或【点睛】本题考查了解一元一次方程-因式分解,熟练掌握因式分解的技巧是本题解题的关键.21、(1)见解析(2)BD=2【解析】解:(1)证明:AD平分CAB,DEAB,C=90,CD=ED,DEA=C=90在RtACD和RtAED中,RtACDRtAED(HL)(2)RtACDRtAED ,CD=1,DC=DE=1DEAB,DEB=90B=30,BD=2DE=2(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可(2)求出DEB=90,
21、DE=1,根据含30度角的直角三角形性质求出即可22、610+4=82 4852+4 【解析】(1)根据题目中的式子的变化规律可以解答本题;(2)根据题目中的式子的变化规律可以解答本题;(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明【详解】解:(1)由题目中的式子可得,第个等式:610+4=82,故答案为610+4=82;(2)由题意可得,4852+4=502,故答案为4852+4;(3)第n个等式是:n(n+4)+4=(n+2)2,证明:n(n+4)+4=n2+4n+4=(n+2)2,n(n+4)+4=(n+2)2成立【点睛】本题考查有理数的混合运算、数字的变化类,解答本题的
22、关键是明确有理数的混合运算的计算方法23、详见解析.【解析】四边形ABCD是正方形,利用已知条件先证明四边形ABCD是平行四边形,再证明四边形ABCD是矩形,再根据对角线垂直的矩形是正方形即可证明四边形ABCD是正方形【详解】证明:在四边形ABCD中,OA=OC,OB=OD,四边形ABCD是平行四边形,OA=OB=OC=OD,又AC=AO+OC,BD=OB+DO,AC=BD,平行四边形是矩形,在AOB中,AOB是直角三角形,即ACBD,矩形ABCD是正方形.【点睛】本题考查了平行四边形的判定、矩形的判定、正方形的判定以及勾股定理的运用和勾股定理的逆定理的运用,题目的综合性很强24、(1)10,
23、补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人【解析】(1)用1减去其他天数所占的百分比即可得到a的值,用310乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案【详解】解:(1)扇形统计图中a=15%40%20%25%=10%,该扇形所对圆心角的度数为31010%=31,参加社会实践活动的天数为8天的人数是:10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1(3)根据题意得:9000(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小