广东省潮州市潮安县2023届中考数学五模试卷含解析.doc

上传人:lil****205 文档编号:87993407 上传时间:2023-04-19 格式:DOC 页数:18 大小:728KB
返回 下载 相关 举报
广东省潮州市潮安县2023届中考数学五模试卷含解析.doc_第1页
第1页 / 共18页
广东省潮州市潮安县2023届中考数学五模试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《广东省潮州市潮安县2023届中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省潮州市潮安县2023届中考数学五模试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,在中, ,以边的中点为圆心,作半圆与相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是( )ABCD2若与 互为相反数,则x的值是()A1B2C3D43把图中

2、的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转()A36B45C72D904如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是()ABCD5计算(ab2)3(ab)2的结果是()Aab4 Bab4 Cab3 Dab36如图所示,在ABC中,C=90,AC=4,BC=3,将ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为( )A2BCD7小轩从如图所示的二次函数y=ax2+bx+c(a0)的图象中,观察得出了下面五条信息:ab0;a+b+c0;b+2c0;a2b+4c0;你认为其中正确信息的个数有A2个B3个C4个D5

3、个8如图,在矩形ABCD中,AB4,AD5,AD,AB,BC分别与O相切于E,F,G三点,过点D作O的切线交BC于点M,切点为N,则DM的长为( )ABCD9如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )ABC D 10已知一组数据a,b,c的平均数为5,方差为4,那么数据a2,b2,c2的平均数和方差分别是.()A3,2B3,4C5,2D5,4二、填空题(本大题共6个小题,每小题3分,共18分)11抛物线y=mx2+2mx+5的对称轴是直线_12已知圆锥的底面半径为3cm,侧面积为15cm2,则这个圆锥的侧面展开图的圆心角 13如图,在边长为3的正方形ABCD中,点E是BC边上

4、的点,EC=2,AEP=90,且EP交正方形外角的平分线CP于点P,则PC的长为_14如图,已知圆锥的底面O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为 15如图,为的直径,与相切于点,弦若,则_.16如图,在ABC中,AB=BC,ABC=110,AB的垂直平分线DE交AC于点D,连接BD,则ABD= _三、解答题(共8题,共72分)17(8分)如图,一次函数ykxb的图象与反比例函数的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OAOB(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y2xn于点M,交反比例函数的图象于点N

5、,若NMNP,求n的值18(8分)如图1,点为正的边上一点(不与点重合),点分别在边上,且.(1)求证:;(2)设,的面积为,的面积为,求(用含的式子表示);(3)如图2,若点为边的中点,求证: .图1 图219(8分)解不等式组 请结合题意填空,完成本题的解答(I)解不等式(1),得 ;(II)解不等式(2),得 ;(III)把不等式和的解集在数轴上表示出来:(IV)原不等式组的解集为 20(8分)一位运动员推铅球,铅球运行时离地面的高度(米)是关于运行时间(秒)的二次函数已知铅球刚出手时离地面的高度为米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面如图建立平面直角坐标系()

6、为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标根据题意可知,该二次函数图象上三个点的坐标分别是_;()求这个二次函数的解析式和自变量的取值范围21(8分)如图甲,直线y=x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0x3时,在抛物线上求一点E,使CBE的面积有最大值(图乙、丙供画图探究)22(10分)一辆汽车在某次行驶过程中,油箱中的剩余

7、油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23(12分)如图,已知点D、E为ABC的边BC上两点AD=AE,BD=CE,为了判断B与C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据解:过点A作AHBC,垂足为H在ADE中,AD=AE(已知)AHBC(所作)DH=EH(等腰三角形底边上的高也是底边上的中

8、线)又BD=CE(已知)BD+DH=CE+EH(等式的性质)即:BH= 又 (所作)AH为线段 的垂直平分线AB=AC(线段垂直平分线上的点到线段两个端点的距离相等) (等边对等角)24自学下面材料后,解答问题。分母中含有未知数的不等式叫分式不等式。如: 0,b0,则0;若a0,b0;若a0,b0,则0;若a0,则0,则 或 ,(1)若0的解集.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】如图,设O与AC相切于点E,连接OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q

9、2最大值=5+3=8,由此不难解决问题【详解】解:如图,设O与AC相切于点E,连接OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,AB=10,AC=8,BC=6,AB2=AC2+BC2,C=10,OP1B=10,OP1ACAO=OB,P1C=P1B,OP1=AC=4,P1Q1最小值为OP1-OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,PQ长的最大值与最小值的和是1故选:C【点睛】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,

10、属于中考常考题型2、D【解析】由题意得+=0,去分母3x+4(1-x)=0,解得x=4.故选D.3、C【解析】分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360即可求出最小的旋转角度详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:3605=72 故选C点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角4、B【解析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中【详解】解:从左面看易得下面一层有2个正方形,上面一层左边有1个

11、正方形故选:B【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图5、B【解析】根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,(-ab2)3(-ab)2=-a3b6a2b2=-ab4,故选B.6、C【解析】解:连接BD在ABC中,C=90,AC=4,BC=3,AB=2将ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,AE=4,DE=3,BE=2在RtBED中,BD=故选C点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系题目整体较为简单,适合随堂训练7、D【解析】试题分析

12、:如图,抛物线开口方向向下,a1对称轴x,1ab1故正确如图,当x=1时,y1,即a+b+c1故正确如图,当x=1时,y=ab+c1,2a2b+2c1,即3b2b+2c1b+2c1故正确如图,当x=1时,y1,即ab+c1,抛物线与y轴交于正半轴,c1b1,cb1(ab+c)+(cb)+2c1,即a2b+4c1故正确如图,对称轴,则故正确综上所述,正确的结论是,共5个故选D8、A【解析】试题解析:连接OE,OF,ON,OG,在矩形ABCD中,A=B=90,CD=AB=4,AD,AB,BC分别与O相切于E,F,G三点,AEO=AFO=OFB=BGO=90,四边形AFOE,FBGO是正方形,AF=

13、BF=AE=BG=2,DE=3,DM是O的切线,DN=DE=3,MN=MG,CM=5-2-MN=3-MN,在RtDMC中,DM2=CD2+CM2,(3+NM)2=(3-NM)2+42,NM=,DM=3+=,故选B考点:1.切线的性质;3.矩形的性质9、B【解析】根据俯视图是从上往下看的图形解答即可.【详解】从上往下看到的图形是:.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.10、B【解析】试题分析:平均数为(a2 + b2 + c2 )=(35

14、-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.二、填空题(本大题共6个小题,每小题3分,共18分)11、x=1【解析】根据抛物线的对称轴公式可直接得出.【详解】解:这里a=m,b=2m对称轴x=故答案为:x=-1.【点睛】解答本题关键是识记抛物线的对称轴公式x=.12、1【解析】试题分析:根据圆锥的侧面积公式S=rl得出圆锥的母线长,再结合扇形面积即可求出圆心角的度数解:侧面积为15cm2,圆锥侧面积公式为:S=rl=3l=15,解得:l=5,扇形面积为15=,解得:n=1,侧面展开图的圆心角是1度故答案为1考点:圆锥的计算13、【解析】在AB上取BN=BE,连接EN,根

15、据已知及正方形的性质利用ASA判定ANEECP,从而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解决问题【详解】在AB上取BN=BE,连接EN,作PMBC于M四边形ABCD是正方形,AB=BC,B=DCB=DCM=90BE=BN,B=90,BNE=45,ANE=135PC平分DCM,PCM=45,ECP=135AB=BC,BN=BE,AN=ECAEP=90,AEB+PEC=90AEB+NAE=90,NAE=PEC,ANEECP(ASA),NE=CPBC=3,EC=2,NB=BE=1,NE=,PC=故答案为:【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题

16、的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型14、15【解析】试题分析:OB=BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:65=15故答案为15考点:圆锥的计算15、1【解析】利用切线的性质得,利用直角三角形两锐角互余可得,再根据平行线的性质得到,然后根据等腰三角形的性质求出的度数即可【详解】与相切于点,ACAB,故答案为1【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系16、1【解析】在ABC中,AB=BC,ABC=110,A=C=1,AB的垂直平分线DE交AC于点D,AD=BD,A

17、BD=A=1;故答案是1三、解答题(共8题,共72分)17、20(1)y2x5, y=;(2)n4或n1【解析】(1)由点A坐标知OA=OB=5,可得点B的坐标,由A点坐标可得反比例函数解析式,由A、B两点坐标可得直线AB的解析式;(2)由k=2知N(2,6),根据NP=NM得点M坐标为(2,0)或(2,12),分别代入y=2x-n可得答案【详解】解:(1)点A的坐标为(4,3),OA=5,OA=OB,OB=5,点B在y轴的负半轴上,点B的坐标为(0,-5),将点A(4,3)代入反比例函数解析式y=中,反比例函数解析式为y=,将点A(4,3)、B(0,-5)代入y=kx+b中,得:k=2、b=

18、-5,一次函数解析式为y=2x-5;(2)由(1)知k=2,则点N的坐标为(2,6),NP=NM,点M坐标为(2,0)或(2,12),分别代入y=2x-n可得:n=-4或n=1【点睛】本题主要考查直线和双曲线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式及分类讨论思想的运用18、(1)详见解析;(1)详见解析;(3)详见解析.【解析】(1)根据两角对应相等的两个三角形相似即可判断;(1)如图1中,分别过E,F作EGBC于G,FHBC于H,S1=BDEG=BDEG=aBEsin60=aBE,S1=CDFH=bCF,可得S1S1=abBECF,由(1)得BDECFD,即BEFC=BDCD=

19、ab,即可推出S1S1=a1b1;(3)想办法证明DFECFD,推出,即DF1=EFFC;【详解】(1)证明:如图1中,在BDE中,BDE+DEB+B=180,又BDE+EDF+FDC=180,BDE+DEB+B=BDE+EDF+FDC,EDF=B,DEB=FDC,又B=C,BDECFD(1)如图1中,分别过E,F作EGBC于G,FHBC于H,S1=BDEG=BDEG=aBEsin60=aBE,S1=CDFH=bCF,S1S1=abBECF由(1)得BDECFD,即BEFC=BDCD=ab,S1S1=a1b1(3)由(1)得BDECFD,又BD=CD,又EDF=C=60,DFECFD,即DF1

20、=EFFC【点睛】本题考查了相似形综合题、等边三角形的性质、相似三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找相似三角形的相似的条件.19、(1)x;(1)x1;(3)答案见解析;(4)x1【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【详解】解:(I)解不等式(1),得x;(II)解不等式(1),得x1;(III)把不等式和的解集在数轴上表示出来:(IV)原不等式组的解集为:x1故答案为x、x1、x1【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找

21、;大大小小找不到”的原则是解答此题的关键20、(0,),(4,3)【解析】试题分析:()根据“刚出手时离地面高度为米、经过4秒到达离地面3米的高度和经过1秒落到地面”可得三点坐标;()利用待定系数法求解可得试题解析:解:()由题意知,该二次函数图象上的三个点的坐标分别是(0,)、(4,3)、(1,0)故答案为:(0,)、(4,3)、(1,0)()设这个二次函数的解析式为y=ax2+bx+c,将()三点坐标代入,得:,解得:,所以所求抛物线解析式为y=x2+x+,因为铅球从运动员抛出到落地所经过的时间为1秒,所以自变量的取值范围为0x121、(1)y=x24x+3;(2)(2,)或(2,7)或(

22、2,1+2)或(2,12);(3)E点坐标为(,)时,CBE的面积最大【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EFx轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标试题解析:(1)直线y=x+3与x轴、y轴分别交于点B、点C,B(3,0),C(

23、0,3),把B、C坐标代入抛物线解析式可得,解得,抛物线解析式为y=x24x+3;(2)y=x24x+3=(x2)21,抛物线对称轴为x=2,P(2,1),设M(2,t),且C(0,3),MC=,MP=|t+1|,PC=,CPM为等腰三角形,有MC=MP、MC=PC和MP=PC三种情况,当MC=MP时,则有=|t+1|,解得t=,此时M(2,);当MC=PC时,则有=2,解得t=1(与P点重合,舍去)或t=7,此时M(2,7);当MP=PC时,则有|t+1|=2,解得t=1+2或t=12,此时M(2,1+2)或(2,12);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,1+2

24、)或(2,12);(3)如图,过E作EFx轴,交BC于点F,交x轴于点D,设E(x,x24x+3),则F(x,x+3),0x3,EF=x+3(x24x+3)=x2+3x,SCBE=SEFC+SEFB=EFOD+EFBD=EFOB=3(x2+3x)=(x)2+,当x=时,CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,CBE的面积最大考点:二次函数综合题22、(1)该一次函数解析式为y=x+1(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即

25、可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,1)代入y=kx+b中,得,解得:,该一次函数解析式为y=x+1;(2)当y=x+1=8时,解得x=520,即行驶520千米时,油箱中的剩余油量为8升530520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.23、见解析【解析】根据等腰三角形的性质与判定及线段垂直平分线的性质解答即可.【详解】过点A作AHBC,垂足为H在

26、ADE中,AD=AE(已知),AHBC(所作),DH=EH(等腰三角形底边上的高也是底边上的中线)又BD=CE(已知),BD+DH=CE+EH(等式的性质),即:BH=CHAHBC(所作),AH为线段BC的垂直平分线AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)B=C(等边对等角)【点睛】本题考查等腰三角形的性质及线段垂直平分线的性质,等腰三角形的底边中线、底边上的高、顶角的角平分线三线合一;线段垂直平分线上的点到线段两端的距离相等;24、(1) 或;(2)x2或x0,则 或 ;故答案为: 或;(2)由上述规律可知,不等式转化为或,所以,x2或x1.【点睛】此题考查一元一次不等式组的应用,解题关键在于掌握掌握运算法则.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁