《2023届河南省郑州市金水区为民中学中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届河南省郑州市金水区为民中学中考三模数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,ABC纸片中,A56,C88沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD则BDE的度数为( )A76B74C72D702如图,在ABCD中,AB1,AC4,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F若ACAB,则FD的长为()A2B3C4D63如图,在RtABC中,ACB=90,A=30,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A B1 C D4把四张形状大小完全相同的小长方形卡片(如图)不重叠地放在一个底面为长方形(长为宽为)的盒子底部(如图),
3、盒子底面未被卡片覆盖的部分用阴影表示则图中两块阴影部分周长和是( )ABCD5如图,已知ABCD,ADCD,140,则2的度数为()A60B65C70D756罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大如图是对某球员罚球训练时命中情况的统计:下面三个推断:当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1其中合理的是( )ABCD
4、7小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等设小明打字速度为x个/分钟,则列方程正确的是()ABCD8从1,2,3,6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y图象上的概率是()ABCD9已知a+b4,cd3,则(b+c)(da)的值为( )A7B7C1D110实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )Aa2Ba3CabDab二、填空题(共7小题,每小题3分,满分21分)11在ABC中,AB=AC,BDAC于D,BE平分ABD交AC于E,sinA=,BC=,则 AE=_.12已知二次函
5、数的图象开口向上,且经过原点,试写出一个符合上述条件的二次函数的解析式:_(只需写出一个)13若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是_14直角三角形的两条直角边长为6,8,那么斜边上的中线长是_15如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B内的数为_16在ABC中,AB=13cm,AC=10cm,BC边上的高为11cm,则ABC的面积为_cm117不等式-1的正整数解为_.三、解答题(共7小题,满分69分)18(10分)小强的妈妈想在自家的院子里用竹篱笆围一
6、个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝)小强根据他学习函数的经验做了如下的探究下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米则y关于x的函数表达式为_;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:x0.511.522.533.544.55y17108.38.28.79.310.811.6描点、画函数图象:如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x_时,y有最小值由此,小强确定篱笆
7、长至少为_米19(5分)如图,在平面直角坐标系中,OAOB,ABx轴于点C,点A(,1)在反比例函数的图象上求反比例函数的表达式;在x轴的负半轴上存在一点P,使得SAOP=SAOB,求点P的坐标;若将BOA绕点B按逆时针方向旋转60得到BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由20(8分)我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。(1)选中的男主持人为甲班的频率是 (2)选中的男女主持人均为甲班的概率是多少?(用树状图或列表)21(10分)先化简,再求值:,其中满足22(10分)已知关于x的方程x2(m2)x(2m1)=0
8、。求证:方程恒有两个不相等的实数根;若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。23(12分)如图,在航线l的两侧分别有观测点A和B,点A到航线的距离为2km,点B位于点A北偏东60方向且与A相距10km现有一艘轮船从位于点B南偏西76方向的C处,正沿该航线自西向东航行,5分钟后该轮船行至点A的正北方向的D处(1)求观测点B到航线的距离;(2)求该轮船航行的速度(结果精确到0.1km/h)(参考数据: 1.73,sin760.97,cos760.24,tan764.01)24(14分)如图,在ABC中,ACB90,ABC10,CDE是等边三角形,点D在边A
9、B上如图1,当点E在边BC上时,求证DEEB;如图2,当点E在ABC内部时,猜想ED和EB数量关系,并加以证明;如图1,当点E在ABC外部时,EHAB于点H,过点E作GEAB,交线段AC的延长线于点G,AG5CG,BH1求CG的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】直接利用三角形内角和定理得出ABC的度数,再利用翻折变换的性质得出BDE的度数【详解】解:A=56,C=88,ABC=180-56-88=36,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,CBD=DBE=18,C=DEB=88,BDE=180-18-88=74故
10、选:B【点睛】此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键2、C【解析】利用平行四边形的性质得出ADFEBF,得出=,再根据勾股定理求出BO的长,进而得出答案【详解】解:在ABCD中,对角线AC、BD相交于O,BO=DO,AO=OC,ADBC,ADFEBF,=,AC=4,AO=2,AB=1,ACAB,BO=3,BD=6,E是BC的中点,=,BF=2, FD=4.故选C.【点睛】本题考查了勾股定理与相似三角形的判定与性质,解题的关键是熟练的掌握勾股定理与相似三角形的判定与性质.3、B【解析】根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是ACD的中位线
11、即可求出.【详解】ACB=90,A=30, BC=AB. BC=2, AB=2BC=22=4, D是AB的中点, CD=AB= 4=2. E,F分别为AC,AD的中点, EF是ACD的中位线. EF=CD= 2=1.故答案选B.【点睛】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.4、D【解析】根据题意列出关系式,去括号合并即可得到结果【详解】解:设小长方形卡片的长为x,宽为y,根据题意得:x+2y=a,则图中两块阴影部分周长和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b故选择:D.【点睛】此题
12、考查了整式的加减,熟练掌握运算法则是解本题的关键5、C【解析】由等腰三角形的性质可求ACD70,由平行线的性质可求解【详解】ADCD,140,ACD70,ABCD,2ACD70,故选:C【点睛】本题考查了等腰三角形的性质,平行线的性质,是基础题6、B【解析】根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:4115000.822,但“罚球命中”的概率不一定是0.822,故错误;随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2故正确;虽然该
13、球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故错误故选:B【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.7、C【解析】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得,故选C【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大8、B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(m,n)恰好在反比例函数y图象上的情况,再利用概率公式即可求得答案【详解】解:画树状图得:共有12种等可能的结果,点(m,n)
14、恰好在反比例函数y图象上的有:(2,3),(1,6),(3,2),(6,1),点(m,n)在函数y图象上的概率是:故选B【点睛】此题考查了列表法或树状图法求概率用到的知识点为:概率所求情况数与总情况数之比9、C【解析】试题分析:原式去括号可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1故选A考点:代数式的求值;整体思想10、D【解析】试题分析:A如图所示:3a2,故此选项错误;B如图所示:3a2,故此选项错误;C如图所示:1b2,则2b1,又3a2,故ab,故此选项错误;D由选项C可得,此选项正确故选D考点:实数与数轴二、填空题(共7小题,每小题3分,满分21分)11、5【解析】B
15、DAC于D,ADB=90,sinA=.设BD=,则AB=AC=,在RtABD中,由勾股定理可得:AD=,CD=AC-AD=,在RtBDC中,BD2+CD2=BC2,解得(不合题意,舍去),AB=10,AD=8,BD=6,BE平分ABD,AE=5.点睛:本题有两个解题关键点:(1)利用sinA=,设BD=,结合其它条件表达出CD,把条件集中到BDC中,结合BC=由勾股定理解出,从而可求出相关线段的长;(2)要熟悉“三角形角平分线分线段成比例定理:三角形的内角平分线分对边所得线段与这个角的两边对应成比例”.12、y=x2等【解析】分析:根据二次函数的图象开口向上知道a1,又二次函数的图象过原点,可
16、以得到c=1,所以解析式满足a1,c=1即可详解:二次函数的图象开口向上,a1二次函数的图象过原点,c=1 故解析式满足a1,c=1即可,如y=x2 故答案为y=x2(答案不唯一)点睛:本题是开放性试题,考查了二次函数的性质,二次函数图象上点的坐标特征,对考查学生所学函数的深入理解、掌握程度具有积极的意义,但此题若想答对需要满足所有条件,如果学生没有注意某一个条件就容易出错本题的结论是不唯一的,其解答思路渗透了数形结合的数学思想13、k5且k1【解析】试题解析:关于x的一元二次方程有两个不相等的实数根, 解得:且 故答案为且14、1【解析】试题分析:直角三角形的两条直角边长为6,8,由勾股定理
17、得,斜边=10.斜边上的中线长=10=1考点:1.勾股定理;2. 直角三角形斜边上的中线性质15、1【解析】试题解析:正方体的展开图中对面不存在公共部分,B与-1所在的面为对面B内的数为1故答案为116、2或2【解析】试题分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD=16,CD=5,再由图形求出BC,在锐角三角形中,BC=BD+CD=2,在钝角三角形中,BC=CD-BD=2故答案为2或2考点:勾股定理17、1, 2, 1.【解析】去分母,移项,合并同类项,系数化成1即可求出不等式的解集,根据不等式的解集即可求出答案【详解】, 1-x-2, -x-1, x1, 不等式的正整
18、数解是1,2,1, 故答案为:1,2,1【点睛】本题考查了解一元一次不等式和一元一次不等式的整数解,关键是求出不等式的解集.三、解答题(共7小题,满分69分)18、见解析【解析】根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2x,由x()2+4可得当x=2,y有最小值,则可求篱笆长【详解】根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2xx()2+()2=()2+4,x4,2x1,当x=2时,y有最小值为1,由此小强确定篱笆长至少为1米故答案为:y=2x,2,1【点睛】本题考查了反比例函数的应用,完全平方公式的运用,关键是熟练运用完全平方公式19、(
19、1);(2)P(,0);(3)E(,1),在【解析】(1)将点A(,1)代入,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B(,3),计算求出SAOB=4=则SAOP=SAOB=设点P的坐标为(m,0),列出方程求解即可;(3)先解OAB,得出ABO=30,再根据旋转的性质求出E点坐标为(,1),即可求解【详解】(1)点A(,1)在反比例函数的图象上,k=1=,反比例函数的表达式为;(2)A(,1),ABx轴于点C,OC=,AC=1,由射影定理得=ACBC,可得BC=3,B(,3),SAOB=4=,SAOP=SAOB=设点P的坐标为(m,0),|m|1=,|m
20、|=,P是x轴的负半轴上的点,m=,点P的坐标为(,0);(3)点E在该反比例函数的图象上,理由如下:OAOB,OA=2,OB=,AB=4,sinABO=,ABO=30,将BOA绕点B按逆时针方向旋转60得到BDE,BOABDE,OBD=60,BO=BD=,OA=DE=2,BOA=BDE=90,ABD=30+60=90,而BDOC=,BCDE=1,E(,1),(1)=,点E在该反比例函数的图象上考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;坐标与图形变化-旋转20、 (1) (2) ,图形见解析.【解析】(1)根据概率的定义即可求出;(2)先根据题意列出树状图,再利用概率公式
21、进行求解.【详解】(1)由题意P(选中的男主持人为甲班)=(2)列出树状图如下P(选中的男女主持人均为甲班的)=【点睛】此题主要考查概率的计算,解题的关键是根据题意列出树状图进行求解.21、,1【解析】原式括号中的两项通分并利用同分母分式的加法法则计算,再与括号外的分式通分后利用同分母分式的加法法则计算,约分得到最简结果,将变形为,整体代入计算即可【详解】解:原式,原式【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则22、(1)见详解;(2)4或4.【解析】(1)根据关于x的方程x2(m2)x(2m1)=0的根的判别式的符号来证明结论.(2)根据一元二次方程的解
22、的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:当该直角三角形的两直角边是2、3时,当该直角三角形的直角边和斜边分别是2、3时,由勾股定理求出得该直角三角形的另一边,再根据三角形的周长公式进行计算.【详解】解:(1)证明:=(m2)24(2m1)=(m2)24,在实数范围内,m无论取何值,(m2)2+440,即0.关于x的方程x2(m2)x(2m1)=0恒有两个不相等的实数根.(2)此方程的一个根是1,121(m2)(2m1)=0,解得,m=2,则方程的另一根为:m21=2+1=3.当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为,该直角三角形的周长为13=4.当该
23、直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为;则该直角三角形的周长为13=4.23、(1)观测点到航线的距离为3km(2)该轮船航行的速度约为40.6km/h【解析】试题分析:(1)设AB与l交于点O,利用DAO=60,利用DAO的余弦求出OA长,从而求得OB长,继而求得BE长即可;(2)先计算出DE=EF+DF=求出DE=5,再由进而由tanCBE=求出EC,即可求出CD的长,进而求出航行速度试题解析:(1)设AB与l交于点O,在RtAOD中,OAD=60,AD=2(km),OA=4(km),AB=10(km),OB=ABOA=6(km),在RtBOE中,O
24、BE=OAD=60,BE=OBcos60=3(km),答:观测点B到航线l的距离为3km; (2)OAD=60,AD=2(km),OD=ADtan60=2 ,BEO=90,BO=6,BE=3,OE=3,DE=OD+OE=5(km); CE=BEtanCBE=3tan76,CD=CEDE=3tan7653.38(km),5(min)= (h),v=12CD=123.3840.6(km/h),答:该轮船航行的速度约为40.6km/h【点睛】本题主要考查了方向角问题以及利用锐角三角函数关系得出EC,DE,DO的长是解题关键24、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2【解析】(
25、1)、根据等边三角形的性质得出CED=60,从而得出EDB=10,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据ACO和CDE为等边三角形,从而得出ACD和OCE全等,然后得出COE和BOE全等,从而得出答案;(1)、取AB的中点O,连接CO、EO、EB,根据题意得出COE和BOE全等,然后得出CEG和DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案【详解】(1)CDE是等边三角形, CED=60, EDB=60B=10,EDB=B, DE=EB;(2) ED=EB, 理由如下:取AB的中点O,连接CO、EO,ACB=90,ABC=10, A=60,OC=OA, ACO为等边三角形, CA=CO,CDE是等边三角形, ACD=OCE,ACDOCE, COE=A=60,BOE=60, COEBOE, EC=EB, ED=EB;(1)、取AB的中点O,连接CO、EO、EB, 由(2)得ACDOCE,COE=A=60,BOE=60,COEBOE,EC=EB,ED=EB, EHAB,DH=BH=1,GEAB, G=180A=120, CEGDCO, CG=OD,设CG=a,则AG=5a,OD=a,AC=OC=4a,OC=OB, 4a=a+1+1, 解得,a=2,即CG=2