《2023届河南省郑州市金水区金水区为民中学初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届河南省郑州市金水区金水区为民中学初中数学毕业考试模拟冲刺卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知一组数据:12,5,9,5,14,下列说法不正确的是( )A平均数是9B中位数是9C众数是5D极差是52下列运算中正确的是( )Ax2x8=x6Baa2=a2C
2、(a2)3=a5D(3a)3=9a33要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()ABCD4某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A(7+x)(5+x)3=75B(7+x)(5+x)=375C(7+2x)(5+2x)3=75D(7+2x)(5+2x)=3755下面的几何图形是由四个相同的小正方体搭
3、成的,其中主视图和左视图相同的是()A B C D6下列各式计算正确的是()Aa4a3=a12B3a4a=12aC(a3)4=a12Da12a3=a47如图,在O中,直径AB弦CD,垂足为M,则下列结论一定正确的是( )AAC=CDBOM=BMCA=ACDDA=BOD8下列式子一定成立的是()A2a+3a=6aBx8x2=x4CD(a2)3=9统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:年龄(岁)12131415人数(个)2468根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为( )A13、15、14B14、15、14C13.5、15、14D1
4、5、15、1510如图,在中,则等于( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,AB是O的直径,BD,CD分别是过O上点B,C的切线,且BDC110连接AC,则A的度数是_12如图,将ABC绕点A逆时针旋转100,得到ADE.若点D在线段BC的延长线上,则的大小为_.13在我国著名的数学书九章算术中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x钱,则可列关于x的方程为_14图,A,B是反比例函数y=图象上的两
5、点,过点A作ACy轴,垂足为C,AC交OB于点D若D为OB的中点,AOD的面积为3,则k的值为_15如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k0,x0)的图象过点B,E若AB=2,则k的值为_ 16两个等腰直角三角板如图放置,点F为BC的中点,AG=1,BG=3,则CH的长为_17股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_三
6、、解答题(共7小题,满分69分)18(10分)如图1,已知直线y=kx与抛物线y=交于点A(3,6)(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足BAE=BED=AOD继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?19(5分
7、)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,2)求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论20(8分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表请结合图表所给出的信息解答下列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c(1)该校初三学生共有多少人?求表中a,b,c的值,并补全条形统计图初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习
8、经验介绍,求恰好选中甲、乙两位同学的概率21(10分) “千年古都,大美西安”某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大雁塔 B:兵马俑 C:陕西历史博物馆 D:秦岭野生动物园 E:曲江海洋馆)下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B”的学生人数22(10分)(1)如图1,在矩形ABCD中,A
9、B2,BC5,MPN90,且MPN的直角顶点在BC边上,BP1特殊情形:若MP过点A,NP过点D,则 类比探究:如图2,将MPN绕点P按逆时针方向旋转,使PM交AB边于点E,PN交AD边于点F,当点E与点B重合时,停止旋转在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由(2)拓展探究:在RtABC中,ABC90,ABBC2,ADAB,A的半径为1,点E是A上一动点,CFCE交AD于点F请直接写出当AEB为直角三角形时的值23(12分)如图,某中学数学课外学习小组想测量教学楼的高度,组员小方在处仰望教学楼顶端处,测得,小方接着向教学楼方向前进到处,测得,已知,.(1)求教学楼
10、的高度;(2)求的值.24(14分)我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整)请根据图中信息,解答下列问题:此次共调查了 名学生;扇形统计图中D所在扇形的圆心角为 ;将上面的条形统计图补充完整;若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案平均数为(12
11、+5+9+5+14)5=9,故选项A正确;重新排列为5,5,9,12,14,中位数为9,故选项B正确;5出现了2次,最多,众数是5,故选项C正确;极差为:145=9,故选项D错误故选D2、A【解析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可【详解】解:A、x2x8=x-6,故该选项正确;B、aa2=a3,故该选项错误;C、(a2)3=a6,故该选项错误;D、(3a)3=27a3,故该选项错误;故选A【点睛】此题主要考查了同底数幂的乘除法、幂的
12、乘方和积的乘方,关键是掌握相关运算法则3、A【解析】根据应用题的题目条件建立方程即可.【详解】解:由题可得:即:故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.4、D【解析】试题分析:由题意得;如图知;矩形的长=7+2x 宽=5+2x 矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=375考点:列方程点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题5、C【解析】试题分析:观察可得,只有选项C的主视图和左视图相同,都为,故答案
13、选C.考点:简单几何体的三视图.6、C【解析】根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D【详解】Aa4a3=a7,故A错误;B3a4a=12a2,故B错误;C(a3)4=a12,故C正确;Da12a3=a9,故D错误故选C【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键7、D【解析】根据垂径定理判断即可【详解】连接DA直径AB弦CD,垂足为M,CM=MD,CAB=DAB2DAB=BOD,CAD=BOD故选D【点睛】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一
14、半是解答此题的关键8、D【解析】根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可.【详解】解:A:2a+3a=(2+3)a=5a,故A错误;B:x8x2=x8-2=x6,故B错误;C:=,故C错误;D:(-a-2)3=-a-6=-,故D正确.故选D.【点睛】本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.9、B【解析】根据加权平均数、众数、中位数的计算方法求解即可.【详解】,15出现了8次,出现的次数最多,故众数是15,从小到大排列后,排在10、11两个位置的数是14,14,故中位数是14.故选B.
15、【点睛】本题考查了平均数、众数与中位数的意义数据x1、x2、xn的加权平均数:(其中w1、w2、wn分别为x1、x2、xn的权数).一组数据中出现次数最多的数据叫做众数中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数10、A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得详解:在RtABC中,AB=10、AC=8,BC=,sinA=.故选:A点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义二、填空题(共7小题,每小题3分,满分21分)11、4【解析】试题分析:连结BC,因为AB是
16、O的直径,所以ACB90,A+ABC90,又因为BD,CD分别是过O上点B,C的切线,BDC440,所以CD=BD,所以BCDDBC4,又ABD90,所以A=DBC4考点:4圆周角定理;4切线的性质;4切线长定理12、40【解析】根据旋转的性质可得出ABAD、BAD100,再根据等腰三角形的性质可求出B的度数,此题得解【详解】根据旋转的性质,可得:ABAD,BAD100,BADB(180100)40故填:40.【点睛】本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出B的度数是解题的关键13、【解析】设羊价为x钱,根据题意可得合伙的人数为或,由合伙人数不变可得方程
17、【详解】设羊价为x钱,根据题意可得方程:,故答案为:【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程14、1【解析】先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据AOD的面积为3,列出关系式求得k的值解:设点D坐标为(a,b),点D为OB的中点,点B的坐标为(2a,2b),k=4ab,又ACy轴,A在反比例函数图象上,A的坐标为(4a,b),AD=4aa=3a,AOD的面积为3,3ab=3,ab=2,k=4ab=42=1故答案为1“点睛”本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式
18、,根据AOD的面积为1列出关系式是解题的关键15、【解析】解:设E(x,x),B(2,x+2),反比例函数 (k0,x0)的图象过点B. E.x2=2(x+2), ,(舍去), ,故答案为16、【解析】依据B=C=45,DFE=45,即可得出BGF=CFH,进而得到BFGCHF,依据相似三角形的性质,即可得到=,即=,即可得到CH=【详解】解:AG=1,BG=3,AB=4,ABC是等腰直角三角形,BC=4,B=C=45,F是BC的中点,BF=CF=2,DEF是等腰直角三角形,DFE=45,CFH=180BFG45=135BFG,又BFG中,BGF=180BBFG=135BFG,BGF=CFH,
19、BFGCHF,=,即=,CH=,故答案为【点睛】本题主要考查了相似三角形的判定与性质,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.17、.【解析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能10%,设这两天此股票股价的平均增长率为x,每天相对于前一天就上涨到1+x,由此列出方程解答即可【详解】设这两天此股票股价的平均增长率为x,由题意得(110%)(1+x)21故答案为:(110%)(1+x)21【点睛】本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为,变化后的量为
20、,平均变化率为,则经过两次变化后的数量关系为三、解答题(共7小题,满分69分)18、(1)y=2x,OA=,(2)是一个定值,(3)当时,E点只有1个,当时,E点有2个。【解析】(1)把点A(3,6)代入y=kx 得;6=3k,k=2,y=2xOA=(2)是一个定值,理由如下:如答图1,过点Q作QGy轴于点G,QHx轴于点H当QH与QM重合时,显然QG与QN重合,此时;当QH与QM不重合时,QNQM,QGQH不妨设点H,G分别在x、y轴的正半轴上,MQH=GQN,又QHM=QGN=90QHMQGN(5分),当点P、Q在抛物线和直线上不同位置时,同理可得如答图2,延长AB交x轴于点F,过点F作F
21、COA于点C,过点A作ARx轴于点RAOD=BAE,AF=OF,OC=AC=OA=ARO=FCO=90,AOR=FOC,AORFOC,OF=,点F(,0),设点B(x,),过点B作BKAR于点K,则AKBARF,即,解得x1=6,x2=3(舍去),点B(6,2),BK=63=3,AK=62=4,AB=5 (求AB也可采用下面的方法)设直线AF为y=kx+b(k0)把点A(3,6),点F(,0)代入得k=,b=10,(舍去),B(6,2),AB=5在ABE与OED中BAE=BED,ABE+AEB=DEO+AEB,ABE=DEO,BAE=EOD,ABEOED.设OE=x,则AE=x (),由ABE
22、OED得,()顶点为(,)如答图3,当时,OE=x=,此时E点有1个;当时,任取一个m的值都对应着两个x值,此时E点有2个当时,E点只有1个当时,E点有2个19、(1)(2)1x0或x1(3)四边形OABC是平行四边形;理由见解析【解析】(1)设反比例函数的解析式为(k0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CBOA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC【详解】解:(1)设反比例函数的解析式为(k0)A(m,2)在y=2x上,2=2m,解
23、得m=1A(1,2)又点A在上,解得k=2,反比例函数的解析式为(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为1x0或x1(3)四边形OABC是菱形证明如下: A(1,2),由题意知:CBOA且CB=,CB=OA四边形OABC是平行四边形C(2,n)在上,C(2,1)OC=OA平行四边形OABC是菱形20、(1)300人(2)b=0.15,c=0.2;(3) 【解析】分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其
24、发生的概率.详解:(1)由题意可得:该校初三学生共有:1050.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=3000.3=90(人),b=0.15,c=0.2;如图所示:(3)画树形图得:一共有12种情况,抽取到甲和乙的有2种,P(抽到甲和乙)=点睛:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.21、(1)40;(2)想去D景点的人数是8,圆心角度数是72;(3)280.【解析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360乘以最
25、想去D景点的人数所占的百分比即可得到扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去B景点的人数所占的百分比即可【详解】(1)被调查的学生总人数为820%=40(人);(2)最想去D景点的人数为40-8-14-4-6=8(人),补全条形统计图为:扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数为360=72;(3)800=280,所以估计“醉美旅游景点B“的学生人数为280人【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来从条形图可以很容易看出数据的大小,便于比较也考查了扇形
26、统计图和利用样本估计总体22、 (1) 特殊情形:;类比探究: 是定值,理由见解析;(2) 或【解析】(1)证明,即可求解;(2)点E与点B重合时,四边形EBFA为矩形,即可求解;(3)分时、时,两种情况分别求解即可【详解】解:(1),故答案为;(2)点E与点B重合时,四边形EBFA为矩形,则为定值;(3)当时,如图3,过点E、F分别作直线BC的垂线交于点G,H,由(1)知:,同理, .则,则 ;当时,如图4,则,则,则 ,故或 【点睛】本题考查的圆知识的综合运用,涉及到解直角三角形的基本知识,其中(3),要注意分类求解,避免遗漏23、(1)12m;(2)【解析】(1)利用即可求解;(2)通过
27、三角形外角的性质得出,则,设,则,在 中利用勾股定理即可求出BC,BD的长度,最后利用即可求解【详解】解:(1)在中,答:教学楼的高度为;(2)设,则,故,解得:,则故【点睛】本题主要考查解直角三角形,掌握勾股定理及正切,余弦的定义是解题的关键24、(1)120;(2)54;(3)详见解析(4)1【解析】(1)根据B的人数除以占的百分比即可得到总人数;(2)先根据题意列出算式,再求出即可;(3)先求出对应的人数,再画出即可;(4)先列出算式,再求出即可【详解】(1)(25+23)40%=120(名),即此次共调查了120名学生,故答案为120;(2)360=54,即扇形统计图中D所在扇形的圆心角为54,故答案为54;(3)如图所示:;(4)800=1(人),答:估计对食品安全知识“非常了解”的学生的人数是1人【点睛】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键