《2023届河南省郑州市金水区实验中学中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届河南省郑州市金水区实验中学中考联考数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是()A小明不是胜就是输,所以小明胜的概率为B小明胜的概率是,所以输的概率是C两人出相同手势的概率为D小明胜的概率和小亮胜的概率一样2在实数,有理数有( )A1个B2个C3个D4个3如图,一束平行太阳光线FA、GB
2、照射到正五边形ABCDE上,ABG46,则FAE的度数是()A26B44C46D724在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画法正确的是( )ABCD5如图所示的几何体的俯视图是()ABCD6如图,已知ADE是ABC绕点A逆时针旋转所得,其中点D在射线AC上,设旋转角为,直线BC与直线DE交于点F,那么下列结论不正确的是()ABACBDAECCFDDFDC7如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:AME=90;BAF=EDB;BMO=90;
3、MD=2AM=4EM;其中正确结论的是( )ABCD8如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A(4,4)B(3,3)C(3,1)D(4,1)9已知a+b4,cd3,则(b+c)(da)的值为( )A7B7C1D110下列立体图形中,主视图是三角形的是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11已知是二元一次方程组的解,则m+3n的立方根为_12如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为,再沿直线前进5米,到达点C后,又向左旋转角度,照这
4、样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度为_13如图,在四边形ABCD中,AC、BD是对角线,AC=AD,BCAB,ABCD,AB=4,BD=2,tanBAC=3,则线段BC的长是_14若y=,则x+y= 15如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E则四边形AECF的面积是 16如图,点A、B、C、D在O上,O点在D的内部,四边形OABC为平行四边形,则OAD+OCD= .17如图,在RtABC中,ACB=90,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,s
5、inA=,则DE=_三、解答题(共7小题,满分69分)18(10分)如图,在ABC中,点D在边BC上,联结AD,ADB=CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DEDF(1)求证:BFDCAD;(2)求证:BFDE=ABAD19(5分)如图,AC是O的直径,点P在线段AC的延长线上,且PC=CO,点B在O上,且CAB=30(1)求证:PB是O的切线;(2)若D为圆O上任一动点,O的半径为5cm时,当弧CD长为 时,四边形ADPB为菱形,当弧CD长为 时,四边形ADCB为矩形20(8分)解不等式组并在数轴上表示解集21(10分)如图,热气球的探测器显示,从热气球 A 看一栋
6、髙楼顶部 B 的仰角为 30,看这栋高楼底部 C 的 俯角为 60,热气球 A 与高楼的水平距离为 120m,求这栋高楼 BC 的高度 22(10分)某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:销售价格元千克2410市场需求量百千克12104已知按物价部门规定销售价格x不低于2元千克且不高于10元千克求q与x的函数关系式;当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期
7、短而只能废弃若该半成品食材的成本是2元千克求厂家获得的利润百元与销售价格x的函数关系式;当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本23(12分)解不等式组: ,并写出它的所有整数解24(14分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区18001600B地区16001200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(
8、元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】利用概率公式,一一判断即可解决问题.【详解】A、错误小明还有可能是平;B、错误、小明胜的概率是,所以输的概率是也是;C、错误两人出相同手势的概率为;D、正确小明胜的概率和小亮胜的概率一样,概率都是;故选D【点睛】本题考查列表法、树状图等知识用到的知识点为
9、:概率=所求情况数与总情况数之比2、D【解析】试题分析:根据有理数是有限小数或无限循环小数,可得答案:是有理数,故选D考点:有理数3、A【解析】先根据正五边形的性质求出EAB的度数,再由平行线的性质即可得出结论【详解】解:图中是正五边形EAB108太阳光线互相平行,ABG46,FAE180ABGEAB1804610826故选A【点睛】此题考查平行线的性质,多边形内角与外角,解题关键在于求出EAB.4、A【解析】解:可把A、B、C、D选项折叠,能够复原(1)图的只有A故选A5、D【解析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中【详解】从上往下看,该几何体的俯视图与选项D所
10、示视图一致故选D【点睛】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图6、D【解析】利用旋转不变性即可解决问题【详解】DAE是由BAC旋转得到,BAC=DAE=,B=D,ACB=DCF,CFD=BAC=,故A,B,C正确,故选D【点睛】本题考查旋转的性质,解题的关键是熟练掌握旋转不变性解决问题,属于中考常考题型7、D【解析】根据正方形的性质可得AB=BC=AD,ABC=BAD=90,再根据中点定义求出AE=BF,然后利用“边角边”证明ABF和DAE全等,根据全等三角形对应角相等可得BAF=ADE,然后求出ADE+DAF=BAD=90,从而求出AMD=90,再根据邻补角的定义
11、可得AME=90,从而判断正确;根据中线的定义判断出ADEEDB,然后求出BAFEDB,判断出错误;根据直角三角形的性质判断出AED、MAD、MEA三个三角形相似,利用相似三角形对应边成比例可得,然后求出MD=2AM=4EM,判断出正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出正确;过点M作MNAB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GHAB,过点O作OKGH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出BMO
12、=90,从而判断出正确【详解】在正方形ABCD中,AB=BC=AD,ABC=BAD=90,E、F分别为边AB,BC的中点,AE=BF=BC,在ABF和DAE中, ,ABFDAE(SAS),BAF=ADE,BAF+DAF=BAD=90,ADE+DAF=BAD=90,AMD=180-(ADE+DAF)=180-90=90,AME=180-AMD=180-90=90,故正确;DE是ABD的中线,ADEEDB,BAFEDB,故错误;BAD=90,AMDE,AEDMADMEA,AM=2EM,MD=2AM,MD=2AM=4EM,故正确;设正方形ABCD的边长为2a,则BF=a,在RtABF中,AF= BA
13、F=MAE,ABC=AME=90,AMEABF, ,即,解得AM= MF=AF-AM=,AM=MF,故正确;如图,过点M作MNAB于N,则 即 解得MN=,AN=,NB=AB-AN=2a-=,根据勾股定理,BM=过点M作GHAB,过点O作OKGH于K,则OK=a-=,MK=-a=,在RtMKO中,MO=根据正方形的性质,BO=2a,BM2+MO2= BM2+MO2=BO2,BMO是直角三角形,BMO=90,故正确;综上所述,正确的结论有共4个故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分
14、析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键8、A【解析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标【详解】以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,A点与C点是对应点,C点的对应点A的坐标为(2,2),位似比为1:2,点C的坐标为:(4,4)故选A【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键9、C【解析】试题分析:原式去括号可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1故选A考点:代数式的求值;整体思想10、A【解析】考查简单几何体的三视图根据从正面看得到的图形是主视图,可得图形的主视图【详
15、解】A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意故选A【点睛】主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看二、填空题(共7小题,每小题3分,满分21分)11、3【解析】把x与y的值代入方程组求出m与n的值,即可确定出所求【详解】解:把代入方程组得:相加得:m+3n=27,则27的立方根为3,故答案为3【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值12、【解析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再
16、根据外角和计算左转的角度【详解】连续左转后形成的正多边形边数为:,则左转的角度是故答案是:【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360是关键13、6【解析】作DEAB,交BA的延长线于E,作CFAB,可得DE=CF,且AC=AD,可证RtADERtAFC,可得AE=AF,DAE=BAC,根据tanBAC=DAE=,可设DE=3a,AE=a,根据勾股定理可求a的值,由此可得BF,CF的值再根据勾股定理求BC的长【详解】如图:作DEAB,交BA的延长线于E,作CFAB,ABCD,DEAB,CFABCF=DE,且AC=ADRtADERtAFCAE=AF,DAE=BACtanBA
17、C=3tanDAE=3设AE=a,DE=3a在RtBDE中,BD2=DE2+BE252=(4+a)2+27a2解得a1=1,a2=-(不合题意舍去)AE=1=AF,DE=3=CFBF=AB-AF=3在RtBFC中,BC=6【点睛】本题是解直角三角形问题,恰当地构建辅助线是本题的关键,利用三角形全等证明边相等,并借助同角的三角函数值求线段的长,与勾股定理相结合,依次求出各边的长即可14、1.【解析】试题解析:原二次根式有意义,x-30,3-x0,x=3,y=4,x+y=1考点:二次根式有意义的条件15、1【解析】四边形ABCD为正方形,D=ABC=90,AD=AB,ABE=D=90,EAF=90
18、,DAF+BAF=90,BAE+BAF=90,DAF=BAE,AEBAFD,SAEB=SAFD,它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=116、1【解析】试题分析:四边形OABC为平行四边形,AOC=B,OAB=OCB,OAB+B=180四边形ABCD是圆的内接四边形,D+B=180又DAOC,3D=180,解得D=1OAB=OCB=180-B=1OAD+OCD=31-(D+B+OAB+OCB)=31-(1+120+1+1)=1故答案为1考点:平行四边形的性质;圆内接四边形的性质17、【解析】在RtABC中,BC=6,sinA=AB=10D是AB的中点,AD=
19、AB=1C=EDA=90,A=AADEACB,即解得:DE=三、解答题(共7小题,满分69分)18、见解析【解析】试题分析:(1), ,可得 ,从而得,再根据BDF=CDA 即可证;(2)由 ,可得,从而可得,再由,可得从而得,继而可得 ,得到试题解析:(1), , ,又ADB=CDE ,ADB+ADF=CDE+ADF,即BDF=CDA ,;(2) , , , 【点睛】本题考查了相似三角形的性质与判定,能结合图形以及已知条件灵活选择恰当的方法进行证明是关键.19、(1)证明见解析(2)cm,cm【解析】【分析】(1)连接OB,要证明PB是切线,只需证明OBPB即可;(2)利用菱形、矩形的性质,
20、求出圆心角COD即可解决问题.【详解】(1)如图连接OB、BC,OA=OB,OAB=OBA=30,COB=OAB=OBA=60,OB=OC,OBC是等边三角形,BC=OC,PC=OA=OC,BC=CO=CP,PBO=90,OBPB,PB是O的切线;(2)的长为cm时,四边形ADPB是菱形,四边形ADPB是菱形,ADB=ACB=60,COD=2CAD=60,的长=cm;当四边形ADCB是矩形时,易知COD=120,的长=cm,故答案为:cm, cm.【点睛】本题考查了圆的综合题,涉及到切线的判定、矩形的性质、菱形的性质、弧长公式等知识,准确添加辅助线、灵活应用相关知识解决问题是关键.20、x0,
21、不等式组的解集表示在数轴上见解析.【解析】先求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【详解】解不等式2x+10,得:x,解不等式,得:x0,则不等式组的解集为x0,将不等式组的解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”21、这栋高楼的高度是【解析】过A作ADBC,垂足为D,在直角ABD与直角ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解【详解】过点A作ADBC于点D,依题意得,AD=120,在RtABD中,在RtADC
22、中, ,答:这栋高楼的高度是.【点睛】本题主要考查了解直角三角形的应用-仰角俯角问题,难度适中对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算22、(1) ;(2);(3);当时,厂家获得的利润y随销售价格x的上涨而增加【解析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)由题意可得:pq,进而得出x的取值范围;(3)利用顶点式求出函数最值得出答案;利用二次函数的增减性得出答案即可【详解】(1)设q=kx+b(k,b为常数且k0),当x=2时,q=12,当x=4时,q=10,代入解析式得:,解得:,q与x的函数关系式为:q=x+14;(2)当产量小于或等于市场
23、需求量时,有pq,x+8x+14,解得:x4,又2x10,2x4;(3)当产量大于市场需求量时,可得4x10,由题意得:厂家获得的利润是:y=qx2p=x2+13x16=(x)2;当x时,y随x的增加而增加又产量大于市场需求量时,有4x10,当4x时,厂家获得的利润y随销售价格x的上涨而增加【点睛】本题考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题的关键23、2,1,0,1,2;【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可【详解】解:解不等式(1),得解不等式(2),得x2 所以不等式组的解集:3
24、x2 它的整数解为:2,1,0,1,224、(1)y=200x+74000(10x30)(2)有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高【解析】(1)根据题意和表格中的数据可以得到y关于x的函数关系式;(2)根据题意可以得到相应的不等式,从而可以解答本题;(3)根据(1
25、)中的函数解析式和一次函数的性质可以解答本题【详解】解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30x)台,派往A、B地区的甲型联合收割机分别为(30x)台和(x10)台,y=1600x+1200(30x)+1800(30x)+1600(x10)=200x+74000(10x30);(2)由题意可得,200x+7400079600,得x28,28x30,x为整数,x=28、29、30,有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,理由:y=200x+74000中y随x的增大而增大,当x=30时,y取得最大值,此时y=80000,派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高【点睛】本题考查一次函数的性质,解题关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答