2023届浙江省杭州市景芳中学中考二模数学试题含解析.doc

上传人:lil****205 文档编号:87840372 上传时间:2023-04-18 格式:DOC 页数:17 大小:964.50KB
返回 下载 相关 举报
2023届浙江省杭州市景芳中学中考二模数学试题含解析.doc_第1页
第1页 / 共17页
2023届浙江省杭州市景芳中学中考二模数学试题含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2023届浙江省杭州市景芳中学中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届浙江省杭州市景芳中学中考二模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1二次函数yx26x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A(1,0)B(4,0)C(5,0)D(6,0)2ABC在正方形网格中的位置如图所示,则cosB的值为( )ABCD23弘扬社会主义核心价值观,

2、推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:人数2341分数80859095则得分的众数和中位数分别是( )A90和87.5B95和85C90和85D85和87.54不等式组的解集是()Ax1Bx2C1x2D1x25如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,O的半径为1,则APBP的最小值为A1BCD6关于的方程有实数根,则满足( )AB且C且D7如图,将ABC沿着点B到C的方向平移到DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A42B96C84D488气象

3、台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是()A本市明天将有的地区下雨B本市明天将有的时间下雨C本市明天下雨的可能性比较大D本市明天肯定下雨9如图1,在ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是( )APDBPBCPEDPC10如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:AEDDFB;S四边形 BCDG=CG2;若A

4、F=2DF,则BG=6GF,其中正确的结论A只有.B只有.C只有.D.11在0,-2,5,-0.3中,负数的个数是( )A1B2C3D412下列各式正确的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,矩形ABCD中,AB2,点E在AD边上,以E为圆心,EA长为半径的E与BC相切,交CD于点F,连接EF若扇形EAF的面积为,则BC的长是_14在平面直角坐标系中,抛物线y=x2+x+2上有一动点P,直线y=x2上有一动线段AB,当P点坐标为_时,PAB的面积最小15RtABC的边AB=5,AC=4,BC=3,矩形DEFG的四个顶点都在RtABC的边上,当矩形DEF

5、G的面积最大时,其对角线的长为_16因式分解:2b2a2a3bab3=_17如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=的图像交于E、F两点,若DEF的面积为,则k的值_ 18在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为9m,那么这栋建筑物的高度为_m三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的作法是这样的:如图:(1)利用刻度尺在AOB的两边OA,OB上分别取OMON;(2)利用两个三角板,分别过点M,N画OM,O

6、N的垂线,交点为P;(3)画射线OP则射线OP为AOB的平分线请写出小林的画法的依据_20(6分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处测得公路对面的点C与AE的夹角CAE=30,沿着AE方向前进15米到点B处测得CBE=45,求公路的宽度(结果精确到0.1米,参考数据:1.73)21(6分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈起跳,第一次掷得,就顺时针连续跳个边长,落在圈;若第二次掷得,就从圈开

7、始顺时针连续跳个边长,落得圈;设游戏者从圈起跳.小贤随机掷一次骰子,求落回到圈的概率.小南随机掷两次骰子,用列表法求最后落回到圈的概率,并指出他与小贤落回到圈的可能性一样吗?22(8分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”. (1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ; (2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画

8、树状图的方法求小丽回答正确的概率.九宫格23(8分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.24(10分)解方程:25(10分)已知如图RtABC和RtEDC中,ACB=ECD=90,A,C,D在同

9、一条直线上,点M,N,F分别为AB,ED,AD的中点,B=EDC=45, (1)求证MF=NF(2)当B=EDC=30,A,C,D在同一条直线上或不在同一条直线上,如图,图这两种情况时,请猜想线段MF,NF之间的数量关系(不必证明) 26(12分)如图,直线l切O于点A,点P为直线l上一点,直线PO交O于点C、B,点D在线段AP上,连接DB,且ADDB(1)求证:DB为O的切线;(2)若AD1,PBBO,求弦AC的长27(12分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m当起重臂AC长度为9m,张角HAC为118时,求操作平台C

10、离地面的高度(结果保留小数点后一位:参考数据:sin280.47,cos280.88,tan280.53)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,其中一个交点的坐标为,则另一个交点的坐标为,故选C【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质2、A【解析】解:在直角ABD中,BD=2,AD=4,则AB=,则cosB=故选A3、A【解析】找中位数要把数

11、据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案解:在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数,那么由中位数的定义可知,这组数据的中位数是87.5;故选:A“点睛”本题考查了众数、中位数的知识,掌握各知识点的概念是解答本题的关键注意中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数4、D【解析】由x1得,x1,由3x51得,3x6,x2,不等式组的解集为1x2,

12、故选D5、C【解析】作点A关于MN的对称点A,连接AB,交MN于点P,则PA+PB最小,连接OA,AA.点A与A关于MN对称,点A是半圆上的一个三等分点,AON=AON=60,PA=PA,点B是弧AN的中点,BON=30 ,AOB=AON+BON=90,又OA=OA=1,AB=PA+PB=PA+PB=AB=故选:C.6、A【解析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a5时,根据判别式的意义得到a1且a5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a5时,=(-4)2-4(a-5)(-1)

13、0,解得a1,即a1且a5时,方程有两个实数根,所以a的取值范围为a1故选A【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根也考查了一元二次方程的定义7、D【解析】由平移的性质知,BE=6,DE=AB=10,OE=DEDO=104=6,S四边形ODFC=S梯形ABEO=(AB+OE)BE=(10+6)6=1故选D.【点睛】本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.8、C【解析】试题解析:根据概率

14、表示某事情发生的可能性的大小,分析可得:A、明天降水的可能性为85%,并不是有85%的地区降水,错误; B、本市明天将有85%的时间降水,错误; C、明天降水的可能性为90%,说明明天降水的可能性比较大,正确; D、明天肯定下雨,错误 故选C考点:概率的意义9、C【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EPAC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析

15、问题、解决问题的能力用图象解决问题时,要理清图象的含义即会识图10、D【解析】解:ABCD为菱形,AB=ADAB=BD,ABD为等边三角形A=BDF=60又AE=DF,AD=BD,AEDDFB;BGE=BDG+DBF=BDG+GDF=60=BCD,即BGD+BCD=180,点B、C、D、G四点共圆,BGC=BDC=60,DGC=DBC=60 BGC=DGC=60过点C作CMGB于M,CNGD于NCM=CN,则CBMCDN,(HL)S四边形BCDG=S四边形CMGNS四边形CMGN=1SCMG,CGM=60,GM=CG,CM=CG,S四边形CMGN=1SCMG=1CGCG=CG1过点F作FPAE

16、于P点 AF=1FD,FP:AE=DF:DA=1:3,AE=DF,AB=AD,BE=1AE,FP:BE=1:6=FG:BG,即 BG=6GF故选D11、B【解析】根据负数的定义判断即可【详解】解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1故选B12、A【解析】,则B错;,则C;,则D错,故选A二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】分析:设AEF=n,由题意,解得n=120,推出AEF=120,在RtEFD中,求出DE即可解决问题详解:设AEF=n,由题意,解得n=120,AEF=120,FED=60,四边形ABCD是矩形,BC=AD,D=90,

17、EFD=10,DE=EF=1,BC=AD=2+1=1,故答案为1 点睛:本题考查切线的性质、矩形的性质、扇形的面积公式、直角三角形10度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型14、(-1,2)【解析】因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,平移直线与抛物线的切点即为P点,然后求得平移后的直线,联立方程,解方程即可【详解】因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,若直线向上平移与抛物线相切,切点即为P点,设平移后的直线为y=-x-2+b,直线y=-x-2+b与抛物线y=x2+x+2相切,x2+x+2=-x-2+b,即x2

18、+2x+4-b=0,则=4-4(4-b)=0,b=3,平移后的直线为y=-x+1,解得x=-1,y=2,P点坐标为(-1,2),故答案为(-1,2)【点睛】本题主要考查了二次函数图象上点的坐标特征,三角形的面积以及解方程等,理解直线向上平移与抛物线相切,切点即为P点是解题的关键15、或【解析】分两种情形画出图形分别求解即可解决问题【详解】情况1:如图1中,四边形DEFG是ABC的内接矩形,设DE=CF=x,则BF=3-x EFAC,=EF=(3-x)S矩形DEFG=x(3-x)=(x-)2+3x=时,矩形的面积最大,最大值为3,此时对角线=情况2:如图2中,四边形DEFG是ABC的内接矩形,设

19、DE=GF=x,作CHAB于H,交DG于T则CH=,CT=x,DGAB,CDGCAB,DG=5x,S矩形DEFG=x(5x)=(x)2+3,x=时,矩形的面积最大为3,此时对角线= 矩形面积的最大值为3,此时对角线的长为或故答案为或【点睛】本题考查相似三角形的应用、矩形的性质、二次函数的最值等知识,解题的关键是学会用分类讨论的思想思考问题16、ab(ab)2【解析】首先确定公因式为ab,然后提取公因式整理即可【详解】2b2a2a3bab3=ab(2ab-a2-b2)=ab(ab)2,所以答案为ab(ab)2.【点睛】本题考查了因式分解-提公因式法,解题的关键是掌握提公因式法的概念.17、1【解

20、析】利用对称性可设出E、F的两点坐标,表示出DEF的面积,可求出k的值【详解】解:设AFa(a2),则F(a,2),E(2,a),FDDE2a,SDEFDFDE,解得a或a(不合题意,舍去),F(,2),把点F(,2)代入解得:k1,故答案为1【点睛】本题主要考查反比例函数与正方形和三角形面积的运用,表示出E和F的坐标是关键18、1【解析】分析:根据同时同地的物高与影长成正比列式计算即可得解详解:设这栋建筑物的高度为xm,由题意得,解得x=1,即这栋建筑物的高度为1m故答案为1点睛:同时同地的物高与影长成正比,利用相似三角形的相似比,列出方程,通过解方程求出这栋高楼的高度,体现了方程的思想三、

21、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线【解析】利用“HL”判断RtOPMRtOPN,从而得到POM=PON【详解】有画法得OMON,OMPONP90,则可判定RtOPMRtOPN,所以POMPON,即射线OP为AOB的平分线故答案为斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线【点睛】本题考查了作图基本作图,解题关键在于熟练掌握基本作图作一条线段等于已知线段.20、公路的宽为20.5米【解析】作CDAE,设CD=x米,由CBD

22、=45知BD=CD=x,根据tanCAD=,可得=,解之即可【详解】解:如图,过点C作CDAE于点D,设公路的宽CD=x米,CBD=45,BD=CD=x,在RtACD中,CAE=30,tanCAD=,即=,解得:x=20.5(米),答:公路的宽为20.5米【点睛】本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形21、(1)落回到圈的概率;(2)可能性不一样.【解析】(1)由共有6种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求

23、解即可求得答案【详解】(1)掷一次骰子有种等可能的结果,只有掷的时,才会落回到圈,落回到圈的概率;(2)列表得:123456123456共有种等可能的结果,当两次掷得的数字之和为的倍数,即时,才可能落回到圈,这种情况共有种,,可能性不一样【点睛】本题考查了用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比22、(1);(2) 【解析】试题分析:(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率试题解析:(1)

24、对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个正确的概率=,故答案为;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=考点:列表法与树状图法;概率公式23、(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标【解析】试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑

25、面积达到1500万平方米进行比较,即可得出答案试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,根据题意得:700(1+x)2=1183,解得:x1=0.3=30%,x2=2.3(舍去),答:这两年该市推行绿色建筑面积的年平均增长率为30%;(2)根据题意得:1183(1+30%)=1537.9(万平方米),1537.91500,2017年该市能完成计划目标【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解24、x=,x=2【解析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】,则2x(x+

26、1)=3(1x),2x2+5x3=0,(2x1)(x+3)=0,解得:x1=,x2=3,检验:当x=,x=2时,2(x+1)(1x)均不等于0,故x=,x=2都是原方程的解【点睛】本题考查解分式方程的能力(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化25、(1)见解析;(2)MF= NF.【解析】(1)连接AE,BD,先证明ACE和BCD全等,然后得到AE=BD,然后再通过三角形中位线证明即可.(2)根据图(2)(3)进行合理猜想即可.【详解】解:(1)连接AE,BD在ACE和BCD中 ACEBCDAE=B

27、D又点M,N,F分别为AB,ED,AD的中点MF=BD,NF=AEMF=NF(2) MF= NF.方法同上.【点睛】本题考查了三角形全等的判定和性质以及三角形中位线的知识,做出辅助线和合理猜想是解答本题的关键.26、(1)见解析;(2)AC1【解析】(1)要证明DB为O的切线,只要证明OBD90即可(2)根据已知及直角三角形的性质可以得到PD2BD2DA2,再利用等角对等边可以得到ACAP,这样求得AP的值就得出了AC的长【详解】(1)证明:连接OD;PA为O切线,OAD90;在OAD和OBD中,OADOBD,OBDOAD90,OBBDDB为O的切线(2)解:在RtOAP中;PBOBOA,OP

28、2OA,OPA10,POA602C,PD2BD2DA2,OPAC10,ACAP1【点睛】本题考查了切线的判定及性质,全等三全角形的判定等知识点的掌握情况27、操作平台C离地面的高度为7.6m【解析】分析:作CEBD于F,AFCE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,HAF=90,再计算出CAF=28,则在RtACF中利用正弦可计算出CF,然后计算CF+EF即可详解:作CEBD于F,AFCE于F,如图2,易得四边形AHEF为矩形,EF=AH=3.4m,HAF=90,CAF=CAH-HAF=118-90=28,在RtACF中,sinCAF=,CF=9sin28=90.47=4.23,CE=CF+EF=4.23+3.47.6(m),答:操作平台C离地面的高度为7.6m点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁