浙江省杭州市桐庐县达标名校2023届中考五模数学试题含解析.doc

上传人:lil****205 文档编号:88308496 上传时间:2023-04-25 格式:DOC 页数:22 大小:1.06MB
返回 下载 相关 举报
浙江省杭州市桐庐县达标名校2023届中考五模数学试题含解析.doc_第1页
第1页 / 共22页
浙江省杭州市桐庐县达标名校2023届中考五模数学试题含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《浙江省杭州市桐庐县达标名校2023届中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《浙江省杭州市桐庐县达标名校2023届中考五模数学试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )ABCD23点40分,时钟的时针与分针的夹角为()A140B130C120D1103若关于的一元二次方程有两个不相等的实数根,则的取

2、值范围( )ABC且D4利用运算律简便计算52(999)+49(999)+999正确的是A999(52+49)=999101=100899B999(52+491)=999100=99900C999(52+49+1)=999102=101898D999(52+4999)=9992=19985若抛物线ykx22x1与x轴有两个不同的交点,则k的取值范围为()Ak1Bk1Ck1且k0Dk1且k06把三角形按如图所示的规律拼图案,其中第个图案中有1个三角形,第个图案中有4个三角形,第个图案中有8个三角形,按此规律排列下去,则第个图案中三角形的个数为()A15B17C19D2476的倒数是()ABC6D

3、68如图,已知菱形ABCD,B=60,AB=4,则以AC为边长的正方形ACEF的周长为()A16B12C24D189的倒数是( )AB-3C3D10如图,直线AB与直线CD相交于点O,E是COB内一点,且OEAB,AOC=35,则EOD的度数是( )A155B145C135D12511如图,在ABC中,C=90,B=10,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D,下列四个结论:AD是BAC的平分线;ADC=60;点D在AB的中垂线上;SACD:SACB=1:1其中正确的有()A只有B只有C只有D12一

4、元二次方程(x+3)(x-7)=0的两个根是Ax1=3,x2=-7 Bx1=3,x2=7Cx1=-3,x2=7 Dx1=-3,x2=-7二、填空题:(本大题共6个小题,每小题4分,共24分)13分解因式:8a38a2+2a=_14点(a1,y1)、(a1,y2)在反比例函数y(k0)的图象上,若y1y2,则a的范围是_15如图,点A在双曲线y的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC2AB,点E在线段AC上,且AE3EC,点D为OB的中点,若ADE的面积为3,则k的值为_16计算:的结果为_17如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留)为_.18

5、已知ABC中,AB=6,AC=BC=5,将ABC折叠,使点A落在BC边上的点D处,折痕为EF(点EF分别在边AB、AC上)当以BED为顶点的三角形与DEF相似时,BE的长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,反比例y=的图象与一次函数y=kx3的图象在第一象限内交于A(4,a)(1)求一次函数的解析式;(2)若直线x=n(0n4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若ABC是等腰直角三角形,求n的值20(6分)手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车

6、为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为a%,三月底可使用的自行车达到7752辆,求a的值21(6分)解方程22(8分)某校初三体育考试选择项目中,

7、选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:排球109.59.510899.5971045.5109.59.510篮球9.598.58.5109.510869.5109.598.59.56整理、描述数据:按如下分数段整理、描述这两组样本数据: (说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)分析数据:两组样本数据的平均数、中位数、众数如下表所示:项目平均数中位数众数排球8.759.510篮球8.819.259

8、.5得出结论:(1)如果全校有160人选择篮球项目,达到优秀的人数约为_人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.你同意_的看法,理由为_.(至少从两个不同的角度说明推断的合理性)23(8分)如图,抛物线y=x2x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C(1)求点A,点B的坐标;(2)P为第二象限抛物线上的一个动点,求ACP面积的最大值24(10分)已知关于的一元二次方程 (为实数且)求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数的值25(10分)如图,在ABC中,已知AB=AC,AB的垂直平

9、分线交AB于点N,交AC于点M,连接MB若ABC=70,则NMA的度数是 度若AB=8cm,MBC的周长是14cm求BC的长度;若点P为直线MN上一点,请你直接写出PBC周长的最小值26(12分)如图,AB为O的直径,点E在O,C为弧BE的中点,过点C作直线CDAE于D,连接AC、BC试判断直线CD与O的位置关系,并说明理由若AD=2,AC=,求O的半径27(12分)如图,在ABCD中,AB=4,AD=5,tanA=,点P从点A出发,沿折线ABBC以每秒1个单位长度的速度向中点C运动,过点P作PQAB,交折线ADDC于点Q,将线段PQ绕点P顺时针旋转90,得到线段PR,连接QR设PQR与ABC

10、D重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒)(1)当点R与点B重合时,求t的值;(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);(3)当点R落在ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,PCD是等腰三角形时所有的t值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】试题解析:列表如下:共有20种等可能的结果,P(一男一女)=故选B2、B【解析】根据时针与分针相距的份数乘以每份的度数,可得答案【详解】解:3点40分时针与分针相距4+=份,30=130,故

11、选B【点睛】本题考查了钟面角,确定时针与分针相距的份数是解题关键3、C【解析】根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解之即可得出结论【详解】解:关于x的一元二次方程有两个不相等的实数根, ,解得:k1且k1故选:C【点睛】本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a的一元一次不等式组是解题的关键4、B【解析】根据乘法分配律和有理数的混合运算法则可以解答本题【详解】原式=999(52+49-1)=999100=1故选B【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法5

12、、C【解析】根据抛物线ykx22x1与x轴有两个不同的交点,得出b24ac0,进而求出k的取值范围【详解】二次函数ykx22x1的图象与x轴有两个交点,b24ac(2)24k(1)4+4k0,k1,抛物线ykx22x1为二次函数,k0,则k的取值范围为k1且k0,故选C.【点睛】本题考查了二次函数yax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.6、D【解析】由图可知:第个图案有三角形1个,第图案有三角形1+34个,第个图案有三角形1+3+48个,第个图案有三角形1+3+4+412,第n个图案有三角形4(n1

13、)个(n1时),由此得出规律解决问题【详解】解:解:第个图案有三角形1个,第图案有三角形1+34个,第个图案有三角形1+3+48个,第n个图案有三角形4(n1)个(n1时),则第个图中三角形的个数是4(71)24个,故选D【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an4(n1)是解题的关键7、A【解析】解:6的倒数是故选A8、A【解析】由菱形ABCD,B=60,易证得ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF的周长【详解】解:四边形ABCD是菱形,AB=BCB=60,ABC是等边三角形,AC=AB=BC=4,以AC为边长的正方

14、形ACEF的周长为:4AC=1故选A【点睛】本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质此题难度不大,注意掌握数形结合思想的应用9、A【解析】先求出,再求倒数.【详解】因为所以的倒数是故选A【点睛】考核知识点:绝对值,相反数,倒数.10、D【解析】解: EOAB, 故选D.11、D【解析】根据作图过程可判定AD是BAC的角平分线;利用角平分线的定义可推知CAD10,则由直角三角形的性质来求ADC的度数;利用等角对等边可以证得ADB是等腰三角形,由等腰三角形的“三合一”性质可以证明点D在AB的中垂线上;利用10角所对的直角边是斜边的一半,三角形的面积计算公式来求两个三角形面积之比

15、.【详解】根据作图过程可知AD是BAC的角平分线,正确;如图,在ABC中,C90,B10,CAB60,又AD是BAC的平分线,12CAB10,190260,即ADC60,正确;1B10,ADBD,点D在AB的中垂线上,正确;如图,在直角ACD中,210,CDAD,BCCDBDADADAD,SDACACCDACAD.SABCACBCACADACAD,SDAC:SABCACAD:ACAD1:1,正确.故选D.【点睛】本题主要考查尺规作角平分线、角平分线的性质定理、三角形的外角以及等腰三角形的性质,熟练掌握有关知识点是解答的关键.12、C【解析】根据因式分解法直接求解即可得【详解】(x+3)(x7)

16、=0,x+3=0或x7=0,x1=3,x2=7,故选C【点睛】本题考查了解一元二次方程因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、2a(2a1)2【解析】提取2a,再将剩下的4a2-4a+1用完全平方和公式配出(2a1)2,即可得出答案.【详解】原式=2a(4a2-4a+1)=2a(2a1)2.【点睛】本题考查了因式分解,仔细观察题目并提取公因式是解决本题的关键.14、1a1【解析】解:k0,在图象的每一支上,y随x的增大而减小,当点(a-1,y1)、(a+1,y2)在图象的同一支上,y1y2,a-1a+1,解得:无

17、解;当点(a-1,y1)、(a+1,y2)在图象的两支上,y1y2,a-10,a+10,解得:-1a1故答案为:-1a1【点睛】本题考查反比例函数的性质15、.【解析】由AE3EC,ADE的面积为3,可知ADC的面积为4,再根据点D为OB的中点,得到ADC的面积为梯形BOCA面积的一半,即梯形BOCA的面积为8,设A (x,),从而表示出梯形BOCA的面积关于k的等式,求解即可.【详解】如图,连接DC,AE=3EC,ADE的面积为3,CDE的面积为1.ADC的面积为4.点A在双曲线y的第一象限的那一支上,设A点坐标为 (x,).OC2AB,OC=2x.点D为OB的中点,ADC的面积为梯形BOC

18、A面积的一半,梯形BOCA的面积为8.梯形BOCA的面积=,解得.【点睛】反比例函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,同底三角形面积的计算,梯形中位线的性质.16、【解析】分析:根据二次根式的性质先化简,再合并同类二次根式即可.详解:原式=3-5=2 点睛:此题主要考查了二次根式的加减,灵活利用二次根式的化简是解题关键,比较简单.17、250【解析】从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱由三视图可得圆柱的半径和高,易求体积【详解】该立体图形为圆柱,圆柱的底面半径r=5,高h=10,圆柱的体积V=r2h=5210=250(立方单

19、位)答:立体图形的体积为250立方单位故答案为250.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积高18、3或【解析】以BED为顶点的三角形与DEF相似分两种情形画图分别求解即可.【详解】如图作CMAB当FED=EDB时,B=EAF=EDFEDFDBEEFCB,设EF交AD于点OAO=OD,OEBDAE= EB=3当FED=DEB时则FED=FEA=DEB=60此时FEDDEB,设AE=ED=x,作DNAB于N,则EN=,DN=,DNCM,xBE=6-x=故答案为3或【点睛】本题考察学生对相似三角形性质定理的掌握和应用,熟练掌握相似

20、三角形性质定理是解答本题的关键,本题计算量比较大,计算能力也很关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)y=x3(2)1【解析】(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;(2)易求点B、C的坐标分别为(n,),(n,n-3)设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么OED=45根据平行线的性质得到BCA=OED=45,所以当ABC是等腰直角三角形时只有AB=AC一种情况过点A作AFBC于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方

21、程-1=1-(n-3),解方程即可【详解】解:(1)反比例y=的图象过点A(4,a),a=1,A(4,1),把A(4,1)代入一次函数y=kx3,得4k3=1,k=1,一次函数的解析式为y=x3;(2)由题意可知,点B、C的坐标分别为(n,),(n,n3)设直线y=x3与x轴、y轴分别交于点D、E,如图,当x=0时,y=3;当y=0时,x=3,OD=OE,OED=45直线x=n平行于y轴,BCA=OED=45,ABC是等腰直角三角形,且0n4,只有AB=AC一种情况,过点A作AFBC于F,则BF=FC,F(n,1),1=1(n3),解得n1=1,n2=4,0n4,n2=4舍去,n的值是1【点睛

22、】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中20、(1)7000辆;(2)a的值是1【解析】(1)设一月份该公司投入市场的自行车x辆,根据损坏率不低于10%,可得不等量关系:一月初投入的自行车-一月底可用的自行车一月损坏的自行车列不等式求解;(2)根据三月底可使用的自行车达到7752辆,可得等量关系为:(二月份剩余的可用自行车+三月初投入的自行车)三月份的损耗率=7752辆列方程求解.【详解】解:(1)设一月份该公司投入市场的自行车x辆,x(7500110)10%x,解得x7000,答:一月份该公司投入市场的自行车至少有7000辆;(

23、2)由题意可得,7500(11%)+110(1+4a%)(1a%)=7752,化简,得a2250a+4600=0,解得:a1=230,a2=1,解得a80,a=1,答:a的值是1【点睛】本题考查了一元一次不等式和一元二次方程的实际应用,根据一月底的损坏率不低于10%找出不等量关系式解答(1)的关键;根据三月底可使用的自行车达到7752辆找出等量关系是解答(2)的关键.21、原分式方程无解.【解析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.【详解】方程两边乘(x1)(x+2),得x(x+2)(x1)(x+2)3即:x2+2xx2x+23整理,得x1检验:

24、当x1时,(x1)(x+2)0,原方程无解【点睛】本题考查解分式方程,解题的关键是明确解放式方程的计算方法22、130 小明 平均数接近,而排球成绩的中位数和众数都较高 【解析】根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论【详解】解:补全表格成绩:人数项目10排球11275篮球021103达到优秀的人数约为(人);故答案为130;同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高答案不唯一,理由需支持判断结论故答案为小明,平均数接近,而排球成绩的中位数和众数都较高【点睛】本题考查众数、中位数,平

25、均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体23、 (1) A(4,0),B(2,0);(2)ACP最大面积是4.【解析】(1)令y=0,得到关于x 的一元二次方程x2x+4=0,解此方程即可求得结果;(2)先求出直线AC解析式,再作PDAO交AC于D,设P(t,t2t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以SACP=PDOA=PD4=2PD,可得SACP关于t 的函数关系式,继而可求出ACP面积的最大值【详解】(1)解:设y=0,则0=x2x+4x1=4,x2=2A(4,0),B(2,0)(2)作PDAO交AC于D设AC解析式y=kx+b解

26、得:AC解析式为y=x+4.设P(t,t2t+4)则D(t,t+4)PD=(t2t+4)(t+4)=t22t=(t+2)2+2SACP=PD4=(t+2)2+4当t=2时,ACP最大面积4.【点睛】本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.24、 (1)证明见解析;(2)或 【解析】(1)求出的值,再判断出其符号即可;(2)先求出x的值,再由方程的两个实数根都是整数,且m是正整数求出m的值即可【详解】(1)依题意,得 , ,方程总有两个实数根 (2), , 方程的两个实数根都是整数,且是正整数,或或【点睛】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a0)的根

27、与=b2-4ac的关系是解答此题的关键25、(1)50;(2)6;1 【解析】试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出MBC的周长=AC+BC,再代入数据进行计算即可得解;当点P与M重合时,PBC周长的值最小,于是得到结论试题解析:解:(1)AB=AC,C=ABC=70,A=40AB的垂直平分线交AB于点N,ANM=90,NMA=50故答案为50;(2)MN是AB的垂直平分线,AM=BM,MBC的周长=BM+CM+BC=AM+CM+BC=AC+BCAB=8,MBC的周长是1,BC=

28、18=6;当点P与M重合时,PBC周长的值最小,理由:PB+PC=PA+PC,PA+PCAC,P与M重合时,PA+PC=AC,此时PB+PC最小,PBC周长的最小值=AC+BC=8+6=126、(1)直线CD与O相切;(2)O的半径为1.1【解析】(1)相切,连接OC,C为的中点,1=2,OA=OC,1=ACO,2=ACO,ADOC,CDAD,OCCD,直线CD与O相切;(2)连接CE,AD=2,AC=,ADC=90,CD=,CD是O的切线,=ADDE,DE=1,CE=,C为的中点,BC=CE=,AB为O的直径,ACB=90,AB=2半径为1.127、(1);(2)(9t);(3)S =t2+

29、t;S=t2+1S=(9t)2;(3)3或或4或【解析】(1)根据题意点R与点B重合时t+t=3,即可求出t的值;(2)根据题意运用t表示出PQ即可;(3)当点R落在ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;(3)根据等腰三角形的性质即可得出结论.【详解】解:(1)将线段PQ绕点P顺时针旋转90,得到线段PR,PQ=PR,QPR=90,QPR为等腰直角三角形当运动时间为t秒时,AP=t,PQ=PQ=APtanA=t点R与点B重合,AP+PR=t+t=AB=3,解得:t=(2)当点P在BC边上时,3t9,CP=9t,tanA=,tanC=,sinC=,PQ=CPsinC=

30、(9t)(3)如图1中,当t3时,重叠部分是四边形PQKB作KMAR于MKBRQAR, =, =,KM=(t3)=t,S=SPQRSKBR=(t)2(t3)(t)=t2+t如图2中,当3t3时,重叠部分是四边形PQKBS=SPQRSKBR=33tt=t2+1如图3中,当3t9时,重叠部分是PQKS=SPQC=(9t)(9t)=(9t)2(3)如图3中,当DC=DP1=3时,易知AP1=3,t=3当DC=DP2时,CP2=2CD,BP2=,t=3+当CD=CP3时,t=4当CP3=DP3时,CP3=2,t=9=综上所述,满足条件的t的值为3或或4或【点睛】本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁