《2023届福建省南平市中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届福建省南平市中考数学押题卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1二次函数y=(x1)2+5,当mxn且mn0时,y的最小值为2m,最大值为2n,则m+n的值为( )AB2CD2如图,在ABC中,点D,E分别在边AB,AC上,且,则的值为A B
2、 C D3如图,在ABC中,点D在BC上,DEAC,DFAB,下列四个判断中不正确的是( )A四边形AEDF是平行四边形B若BAC90,则四边形AEDF是矩形C若AD平分BAC,则四边形AEDF是矩形D若ADBC且ABAC,则四边形AEDF是菱形4下列运算正确的是()A =2B4=1C=9D=25如图,在O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是A5B6C7D86在下列实数中,3,0,2,1中,绝对值最小的数是()A3B0CD17在中,则的值是( )ABCD8如图,O 是等边ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )ABC2D39一
3、元二次方程x2+x2=0的根的情况是()A有两个不相等的实数根B有两个相等的实数根C只有一个实数根D没有实数根10把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则APG()A141B144C147D150二、填空题(本大题共6个小题,每小题3分,共18分)11在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_个12已知一块等腰三角形钢板的底边长为60cm,
4、腰长为50 cm,能从这块钢板上截得得最大圆得半径为_cm13不等式组的整数解是_14如图,在RtABC中,AC=4,BC=3,将RtABC以点A为中心,逆时针旋转60得到ADE,则线段BE的长度为_15已知,在RtABC中,C=90,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=31将CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是ABC的平分线,此时线段CD的长是_.16如图所示,P为的边OA上一点,且P点的坐标为(3,4),则sin+cos=_三、解答题(共8题,共72分)17(8分)已知:如图,抛物线y=x2+bx+c与x轴交于A(-1,0)
5、、B两点(A在B左),y轴交于点C(0,-3)(1)求抛物线的解析式;(2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由 18(8分)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元求第一批悠悠球每套的进价是多少元;如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?19(8分)如图
6、,BCD90,且BCDC,直线PQ经过点D设PDC(45135),BAPQ于点A,将射线CA绕点C按逆时针方向旋转90,与直线PQ交于点E当125时,ABC ;求证:ACCE;若ABC的外心在其内部,直接写出的取值范围20(8分)计算:4cos30+|3|()1+(2018)021(8分)如图,直线与双曲线相交于、两点.(1) ,点坐标为 (2)在轴上找一点,在轴上找一点,使的值最小,求出点两点坐标22(10分)计算:(3.14)0+|1|2sin45+(1)123(12分)先化简,再求值:,其中a是方程a2+a6=0的解24先化简,再求值:x(x+1)(x+1)(x1),其中x=1参考答案一
7、、选择题(共10小题,每小题3分,共30分)1、D【解析】由mxn和mn0知m0,n0,据此得最小值为1m为负数,最大值为1n为正数将最大值为1n分两种情况,顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出【详解】解:二次函数y=(x1)1+5的大致图象如下:当m0xn1时,当x=m时y取最小值,即1m=(m1)1+5, 解得:m=1当x=n时y取最大值,即1n=(n1)1+5, 解得:n=1或n=1(均不合题意,舍去);当m0x1n时,当x=m时y取最小值,即1m=(m1)1+5, 解得:m=1当x=1时y取
8、最大值,即1n=(11)1+5, 解得:n=, 或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=,m=,m0,此种情形不合题意,所以m+n=1+=2、C【解析】,A=A,ABCAED。故选C。3、C【解析】A选项,在ABC中,点D在BC上,DEAC,DFAB,DEAF,DFAE,四边形AEDF是平行四边形;即A正确;B选项,四边形AEDF是平行四边形,BAC=90,四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=A
9、C,ADBC”可证明AD平分BAC,从而可通过证EAD=CAD=EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.4、A【解析】根据二次根式的性质对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断【详解】A、原式=2,所以A选项正确;B、原式=4-3=,所以B选项错误;C、原式=3,所以C选项错误;D、原式=,所以D选项错误故选A【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,
10、灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍5、B【解析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可【详解】解:半径OC垂直于弦AB,AD=DB= AB= 在RtAOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+( )2,解得,OA=4OD=OC-CD=3,AO=OE,AD=DB,BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键6、B【解析】|3|=3,|=,|0|=0,|2|=2,|1|=1,3210,绝对值最小的数是0,故选:B7、D【解析】首先根据勾股定理求得AC的
11、长,然后利用正弦函数的定义即可求解【详解】C=90,BC=1,AB=4,故选:D【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比8、D【解析】根据等边三角形的性质得到A=60,再利用圆周角定理得到BOC=120,然后根据扇形的面积公式计算图中阴影部分的面积即可【详解】ABC 为等边三角形,A=60,BOC=2A=120,图中阴影部分的面积= =3 故选D【点睛】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得BOC=120是解决问题的关键9、A【解析】=12-41(-2)=90,方程有两个不相等的实数根.故选A.点睛
12、:本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当0时,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当0时,一元二次方程没有实数根. 10、B【解析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得APG的度数【详解】(62)1806120,(52)1805108,APG(62)18012031082720360216144,故选B【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n2)180 (n3)且n为整数)二、填空题(本大题共6个小题,每小题3分,共18分)1
13、1、1【解析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案【详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为200.3=6(个),则红球大约有20-6=1个,故答案为:1【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确12、15【解析】如图,等腰ABC的内切圆
14、O是能从这块钢板上截得的最大圆,则由题意可知:AD和BF是ABC的角平分线,AB=AC=50cm,BC=60cm,ADB=90,BD=CD=30cm,AD=(cm),连接圆心O和切点E,则BEO=90,又OD=OE,OB=OB,BEOBDO,BE=BD=30cm,AE=AB-BE=50-30=20cm,设OD=OE=x,则AO=40-x,在RtAOE中,由勾股定理可得:,解得:(cm).即能截得的最大圆的半径为15cm.故答案为:15.点睛:(1)三角形中能够裁剪出的最大的圆是这个三角形的内切圆;(2)若三角形的三边长分别为a、b、c,面积为S,内切圆的半径为r,则.13、1、0、1【解析】求
15、出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案【详解】,解不等式得:,解不等式得:,不等式组的解集为,不等式组的整数解为-1,0,1.故答案为:-1,0,1.【点睛】本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解.14、【解析】连接CE,作EFBC于F,根据旋转变换的性质得到CAE=60,AC=AE,根据等边三角形的性质得到CE=AC=4,ACE=60,根据直角三角形的性质、勾股定理计算即可【详解】解:连接CE,作EFBC于F,由旋转变换的性质可知,CAE=60,AC=AE,ACE是等边三角形,CE=AC=4,ACE=60,ECF
16、=30,EF=CE=2,由勾股定理得,CF= = ,BF=BC-CF= ,由勾股定理得,BE= ,故答案为:【点睛】本题考查的是旋转变换的性质、等边三角形的判定和性质,掌握旋转变换对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角是解题的关键15、2【解析】分析:设CD=3x,则CE=1x,BE=121x,依据EBF=EFB,可得EF=BE=121x,由旋转可得DF=CD=3x,再根据RtDCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+121x)2,进而得出CD=2详解:如图所示,设CD=3x,则CE=1x,BE=121x=,DCE=ACB=90,A
17、CBDCE,DEC=ABC,ABDE,ABF=BFE又BF平分ABC,ABF=CBF,EBF=EFB,EF=BE=121x,由旋转可得DF=CD=3x在RtDCE中,CD2+CE2=DE2,(3x)2+(1x)2=(3x+121x)2,解得x1=2,x2=3(舍去),CD=23=2故答案为2 点睛:本题考查了相似三角形的判定与性质,勾股定理以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等16、【解析】根据正弦和余弦的概念求解【详解】解:P是的边OA上一点,且P点坐标为(3,4),PB=4,OB=3,OP= =5,故sin=
18、= , cos= ,sin+cos=,故答案为【点睛】此题考查的是锐角三角函数的定义,解答此类题目的关键是找出所求角的对应边三、解答题(共8题,共72分)17、(1);(2);(3)P1(3,-3),P2(,3),P3(,3)【解析】(1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;(2)根据的坐标,易求得直线的解析式由于都是定值,则 的面积不变,若四边形面积最大,则的面积最大;过点作轴交于,则 可得到当面积有最大值时,四边形的面积最大值;(3)本题应分情况讨论:过作轴的平行线,与抛物线的交点符合点的要求,此时的纵坐标相同,代入抛物线的解析式中即可求出点坐标;将平移,令点落
19、在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标【详解】解:(1)把代入,可以求得 (2)过点作轴分别交线段和轴于点,在中,令,得 设直线的解析式为 可求得直线的解析式为: S四边形ABCD 设 当时,有最大值 此时四边形ABCD面积有最大值 (3)如图所示,如图:过点C作CP1x轴交抛物线于点P1,过点P1作P1E1BC交x轴于点E1,此时四边形BP1CE1为平行四边形,C(0,-3)设P1(x,-3)x2-x-3=-3,解得x1=0,x2=3,P1(3,-3);平移直线BC交x轴于点E,交x轴上方的抛物线于
20、点P,当BC=PE时,四边形BCEP为平行四边形,C(0,-3)设P(x,3),x2-x-3=3,x2-3x-8=0解得x=或x=,此时存在点P2(,3)和P3(,3),综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(,3),P3(,3)【点睛】此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大18、(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是1元【解析】分析:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价单价结合第二批购进数量是第一批数量的1.5倍,
21、即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每套悠悠球的售价为y元,根据销售收入-成本=利润结合全部售完后总利润不低于25%,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论详解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据题意得:,解得:x=25,经检验,x=25是原分式方程的解答:第一批悠悠球每套的进价是25元(2)设每套悠悠球的售价为y元,根据题意得:50025(1+1.5)y-500-900(500+900)25%,解得:y1答:每套悠悠球的售价至少是1元点睛:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关
22、键是:(1)找准等量关系,正确列出分式方程是解题的关键;(2)根据各数量之间的关系,正确列出一元一次不等式19、(1)125;(2)详见解析;(3)4590【解析】(1)利用四边形内角和等于360度得:B+ADC180,而ADC+EDC180,即可求解;(2)证明ABCEDC(AAS)即可求解;(3)当ABC90时,ABC的外心在其直角边上,ABC90时,ABC的外心在其外部,即可求解【详解】(1)在四边形BADC中,B+ADC360BADDCB180,而ADC+EDC180,ABCPDC125,故答案为125;(2)ECD+DCA90,DCA+ACB90,ACBECD,又BCDC,由(1)知
23、:ABCPDC,ABCEDC(AAS),ACCE;(3)当ABC90时,ABC的外心在其斜边上;ABC90时,ABC的外心在其外部,而45135,故:4590【点睛】本题考查圆的综合运用,解题的关键是掌握三角形全等的判定和性质(AAS)、三角形外心20、1 【解析】直接利用特殊角的三角函数值和负指数幂的性质、零指数幂的性质、二次根式的性质分别化简得出答案【详解】原式=1+232+1=2+21=11【点睛】此题主要考查了实数运算,正确化简各数是解题关键21、 (1),;(1),.【解析】(1)由点A在一次函数图象上,将A(-1,a)代入y=x+4,求出a的值,得到点A的坐标,再由点A的坐标利用待
24、定系数法求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(1)作点A关于y轴的对称点A,作点B作关于x轴的对称点B,连接AB,交x轴于点P,交y轴于点Q,连接PB、QA利用待定系数法求出直线AB的解析式,进而求出P、Q两点坐标【详解】解:(1)把点A(-1,a)代入一次函数y=x+4,得:a=-1+4,解得:a=3,点A的坐标为(-1,3)把点A(-1,3)代入反比例函数y=,得:k=-3,反比例函数的表达式y=-联立两个函数关系式成方程组得: 解得: 或点B的坐标为(-3,1)故答案为3,(-3,1);(1)作点A关于y轴的对称点A,作点B作关于x轴的对称点B,连接
25、AB,交x轴于点P,交y轴于点Q,连接PB、QA,如图所示点B、B关于x轴对称,点B的坐标为(-3,1),点B的坐标为(-3,-1),PB=PB,点A、A关于y轴对称,点A的坐标为(-1,3),点A的坐标为(1,3),QA=QA,BP+PQ+QA=BP+PQ+QA=AB,值最小设直线AB的解析式为y=mx+n,把A,B两点代入得: 解得: 直线AB的解析式为y=x+1令y=0,则x+1=0,解得:x=-1,点P的坐标为(-1,0),令x=0,则y=1,点Q的坐标为(0,1)【点睛】本题考查反比例函数与一次函数的交点问题、待定系数法求函数解析式、轴对称中的最短线路问题,解题的关键是:(1)联立两
26、函数解析式成方程组,解方程组求出交点坐标;(1)根据轴对称的性质找出点P、Q的位置本题属于基础题,难度适中,解决该题型题目时,联立解析式成方程组,解方程组求出交点坐标是关键22、【解析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案【详解】原式【点睛】考核知识点:三角函数混合运算.正确计算是关键.23、.【解析】先计算括号里面的,再利用除法化简原式,【详解】 ,= ,= ,=,=,由a2+a6=0,得a=3或a=2,a20,a2,a=3,当a=3时,原式=【点睛】本题考查了分式的化简求值及一元二次方程的解,解题的关键是熟练掌握分式的混合运算.24、x+1,2.【解析】先根据单项式乘以多项式的运算法则、平方差公式计算后,再去掉括号,合并同类项化为最简后代入求值即可.【详解】原式=x2+x(x21)=x2+xx2+1=x+1,当x=1时,原式=2【点睛】本题考查了整式的化简求值,根据整式的运算法则先把知识化为最简是解决问题的关键.