《福建省南平市延平区2023届中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《福建省南平市延平区2023届中考猜题数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1下列实数中,无理数是()A3.14B1.01001CD2(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温()25262728天 数1123则这组数据的中位数
2、与众数分别是( )A27,28B27.5,28C28,27D26.5,273某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同设现在每天生产x台机器,根据题意可得方程为()ABCD4如图,在RtABC中,ACB=90,A=30,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A B1 C D5若一个凸多边形的内角和为720,则这个多边形的边数为A4B5C6D76已知二次函数(为常数),当时,函数的最小值为5,则的值为()A1或5B1或3C1或5D1或37如图1,E为矩形ABCD边AD上一点,点P从点B沿折线
3、BEEDDC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s若P,Q同时开始运动,设运动时间为t(s),BPQ的面积为y(cm2)已知y与t的函数图象如图2,则下列结论错误的是( )AAE=6cmBC当0t10时,D当t=12s时,PBQ是等腰三角形8如图,在ABC中,ACBC,ABC=30,点D是CB延长线上的一点,且BD=BA,则tanDAC的值为( )AB2CD39如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录
4、的两个数字都是正数的概率为( )ABCD10如图,在中,面积是16,的垂直平分线分别交边于点,若点为边的中点,点为线段上一动点,则周长的最小值为( )A6B8C10D12二、填空题(本大题共6个小题,每小题3分,共18分)11对于实数a,b,我们定义符号maxa,b的意义为:当ab时,maxa,ba;当ab时,maxa,bb;如:max4,24,max3,33,若关于x的函数为ymaxx+3,x+1,则该函数的最小值是_128的算术平方根是_13满足的整数x的值是_14如果关于x的一元二次方程有两个不相等的实数根,那么的取值范围是_.15飞机着陆后滑行的距离S(单位:米)与滑行的时间t(单位:
5、秒)之间的函数关系式是s60t1.2t2,那么飞机着陆后滑行_秒停下16一副直角三角板叠放如图所示,现将含45角的三角板固定不动,把含30角的三角板绕直角顶点沿逆时针方向匀速旋转一周,第一秒旋转5,第二秒旋转10,第三秒旋转5,第四秒旋转10,按此规律,当两块三角板的斜边平行时,则三角板旋转运动的时间为_三、解答题(共8题,共72分)17(8分)如图,ABC的顶点坐标分别为A(1,3)、B(4,1)、C(1,1)在图中以点O为位似中心在原点的另一侧画出ABC放大1倍后得到的A1B1C1,并写出A1的坐标;请在图中画出ABC绕点O逆时针旋转90后得到的A1B1C118(8分)先化简:,再请你选择
6、一个合适的数作为x的值代入求值19(8分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由20(8分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,A=D求证:ACDE;若BF=13,EC=5,求BC的长 21(8分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分
7、组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图; 分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.22(10分)如图,在ABC中,BAC90,ADBC于点D,BF平分ABC交AD于点E,交AC于点F,求证:AEAF23(12分)已知:如图,在菱形中,点,分别为,的中点,连接,求证:;当与满足什么关系时,四边形是正方形?请说明理由24在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(4,0),B (1,0)两点,与y轴交于点C(1)求这个二次函数的解析式;(2)连接
8、AC、BC,判断ABC的形状,并证明;(3)若点P为二次函数对称轴上点,求出使PBC周长最小时,点P的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】先把能化简的数化简,然后根据无理数的定义逐一判断即可得【详解】A、3.14是有理数;B、1.01001是有理数;C、是无理数;D、是分数,为有理数;故选C【点睛】本题主要考查无理数的定义,属于简单题2、A【解析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28中位数是27这周最高气温的中位数与众数分别是27,28故选A.3
9、、A【解析】根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间【详解】现在每天生产x台机器,则原计划每天生产(x30)台机器依题意得:,故选A【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.4、B【解析】根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是ACD的中位线即可求出.【详解】ACB=90,A=30, BC=AB. BC=2, AB=2BC=22=4, D是AB的中点, CD=AB= 4=2. E,F分别为AC,AD的中点, EF是ACD
10、的中位线. EF=CD= 2=1.故答案选B.【点睛】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.5、C【解析】设这个多边形的边数为n,根据多边形的内角和定理得到(n2)180=720,然后解方程即可【详解】设这个多边形的边数为n,由多边形的内角和是720,根据多边形的内角和定理得(n2)180=720解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.6、A【解析】由解析式可知该函数在x=h时取得最小值1,xh时,y随x的增大而增大;当xh时,y随x的增大而减小;根据1x3时,函数的最小值为5可分如下两种情况
11、:若h3,可得当x=3时,y取得最小值5,分别列出关于h的方程求解即可【详解】解:xh时,y随x的增大而增大,当xh时,y随x的增大而减小,若h3,当时,y随x的增大而减小,当x=3时,y取得最小值5,可得:,解得:h=5或h=1(舍),h=5,若1h3时,当x=h时,y取得最小值为1,不是5,此种情况不符合题意,舍去综上所述,h的值为1或5,故选:A【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键7、D【解析】(1)结论A正确,理由如下:解析函数图象可知,BC=10cm,ED=4cm,故AE=ADED=BCED=104=6cm(2)结论B正确,理由如
12、下:如图,连接EC,过点E作EFBC于点F,由函数图象可知,BC=BE=10cm,EF=1(3)结论C正确,理由如下:如图,过点P作PGBQ于点G,BQ=BP=t,(4)结论D错误,理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如图,连接NB,NC此时AN=1,ND=2,由勾股定理求得:NB=,NC=BC=10,BCN不是等腰三角形,即此时PBQ不是等腰三角形故选D8、A【解析】设AC=a,由特殊角的三角函数值分别表示出BC、AB的长度,进而得出BD、CD的长度,由公式求出tanDAC的值即可.【详解】设AC=a,则BC=a,AB=2a,BD=BA=2a,CD=(2+
13、)a,tanDAC=2+.故选A.【点睛】本题主要考查特殊角的三角函数值.9、C【解析】列表得,120-11(1,1)(1,2)(1,0)(1,-1)2(2,1)(2,2)(2,0)(2,-1)0(0,1)(0,2)(0,0)(0,-1)-1(-1,1)(-1,2)(-1,0)(-1,-1)由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为,故选C.考点:用列表法(或树形图法)求概率.10、C【解析】连接AD,AM,由于ABC是等腰三角形,点D是BC的中点,故,在根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为
14、点C,推出,故AD的长为BM+MD的最小值,由此即可得出结论【详解】连接AD,MAABC是等腰三角形,点D是BC边上的中点 解得EF是线段AC的垂直平分线点A关于直线EF的对称点为点CAD的长为BM+MD的最小值CDM的周长最短 故选:C【点睛】本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】试题分析:当x+3x+1,即:x1时,y=x+3,当x=1时,ymin=2,当x+3x+1,即:x1时,y=x+1,x1,x1,x+12,y2,ymin=2,12、2.【解析】试题分析:
15、本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键依据算术平方根的定义回答即可由算术平方根的定义可知:8的算术平方根是,=2,8的算术平方根是2故答案为2考点:算术平方根.13、3,1【解析】直接得出23,15,进而得出答案【详解】解:23,15,的整数x的值是:3,1故答案为:3,1【点睛】此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键14、k且k1【解析】由题意知,k1,方程有两个不相等的实数根,所以1,=b2-4ac=(2k+1)2-4k2=4k+11又方程是一元二次方程,k1,k-1/4 且k115、1【解析】飞机停下时,也就是滑行距离最远时,即在本题中
16、需求出s最大时对应的t值【详解】由题意,s=1.2t2+60t=1.2(t250t+6161)=1.2(t1)2+750即当t=1秒时,飞机才能停下来故答案为1【点睛】本题考查了二次函数的应用解题时,利用配方法求得t=2时,s取最大值16、14s或38s【解析】试题解析:分两种情况进行讨论:如图: 旋转的度数为: 每两秒旋转 如图: 旋转的度数为: 每两秒旋转 故答案为14s或38s.三、解答题(共8题,共72分)17、(1)A(1,6);(1)见解析【解析】试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数.试题解析:解:(1)如图,A1B1C1为所作,
17、A(1,6);(1)如图,A1B1C1为所作18、x1,1【解析】先通分计算括号里的,再计算括号外的,最后根据分式性质,找一个恰当的数2(此数不唯一)代入化简后的式子计算即可【详解】解:原式x1,根据分式的意义可知,x0,且x1,当x2时,原式211【点睛】本题主要考查分式的化简求值,化简过程中要注意运算顺序,化简结果是最简形式,难点在于当未知数的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为零19、(1);(2)这个游戏不公平,理由见解析.【解析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;
18、(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:;(2)这个游戏不公平画树状图得:共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,P(甲胜)=,P(乙胜)=P(甲胜)P(乙胜),故这个游戏不公平【点睛】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平20、(1)证明见解析;(2)
19、4.【解析】(1)首先证明ABCDFE可得ACE=DEF,进而可得ACDE;(2)根据ABCDFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案【详解】解:(1)在ABC和DFE中, ABCDFE(SAS), ACE=DEF, ACDE;(2)ABCDFE, BC=EF, CBEC=EFEC, EB=CF, BF=13,EC=5,EB=4, CB=4+5=1【点睛】考点:全等三角形的判定与性质21、(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108.【解析】试题分析:(1)用“
20、极高”的人数所占的百分比,即可解答;(2)求出“高”的人数,即可补全统计图;(3)用“中”的人数调查的学生人数,即可得到所占的百分比,所占的百分比即可求出对应的扇形圆心角的度数.试题解析:(人).学生学习兴趣为“高”的人数为:(人).补全统计图如下:分组后学生学习兴趣为“中”的所占的百分比为:学生学习兴趣为“中”对应扇形的圆心角为:22、见解析【解析】根据角平分线的定义可得ABF=CBF,由已知条件可得ABF+AFB=CBF+BED=90,根据余角的性质可得AFB=BED,即可求得AFE=AEF,由等腰三角形的判定即可证得结论【详解】BF 平分ABC,ABF=CBF,BAC=90,ADBC,A
21、BF+AFB=CBF+BED=90,AFB=BED,AEF=BED,AFE=AEF,AE=AF【点睛】本题考查了等腰三角形的判定、直角三角形的性质,根据余角的性质证得AFB=BED是解题的关键23、见解析【解析】(1)由菱形的性质得出BD,ABBCDCAD,由已知和三角形中位线定理证出AEBEDFAF,OFDC,OEBC,OEBC,由(SAS)证明BCEDCF即可;(2)由(1)得:AEOEOFAF,证出四边形AEOF是菱形,再证出AEO90,四边形AEOF是正方形【详解】(1)证明:四边形ABCD是菱形,BD,ABBCDCAD,点E,O,F分别为AB,AC,AD的中点,AEBEDFAF,OF
22、DC,OEBC,OEBC,在BCE和DCF中,,BCEDCF(SAS);(2)当ABBC时,四边形AEOF是正方形,理由如下:由(1)得:AEOEOFAF,四边形AEOF是菱形,ABBC,OEBC,OEAB,AEO90,四边形AEOF是正方形.【点睛】本题考查了全等三角形、菱形、正方形的性质,解题的关键是熟练的掌握菱形、正方形、全等三角形的性质.24、(1)抛物线解析式为y=x2x+2;(2)ABC为直角三角形,理由见解析;(3)当P点坐标为(,)时,PBC周长最小【解析】(1)设交点式y=a(x+4)(x-1),展开得到-4a=2,然后求出a即可得到抛物线解析式;(2)先利用两点间的距离公式
23、计算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判断ABC为直角三角形;(3)抛物线的对称轴为直线x=-,连接AC交直线x=-于P点,如图,利用两点之间线段最短得到PB+PC的值最小,则PBC周长最小,接着利用待定系数法求出直线AC的解析式为y=x+2,然后进行自变量为-所对应的函数值即可得到P点坐标【详解】(1)抛物线的解析式为y=a(x+4)(x1),即y=ax2+3ax4a,4a=2,解得a=,抛物线解析式为y=x2x+2;(2)ABC为直角三角形理由如下:当x=0时,y=x2x+2=2,则C(0,2),A(4,0),B (1,0),AC2=42+2
24、2,BC2=12+22,AB2=52=25,AC2+BC2=AB2,ABC为直角三角形,ACB=90;(3)抛物线的对称轴为直线x=,连接AC交直线x=于P点,如图,PA=PB,PB+PC=PA+PC=AC,此时PB+PC的值最小,PBC周长最小,设直线AC的解析式为y=kx+m,把A(4,0),C(0,2)代入得,解得,直线AC的解析式为y=x+2,当x=时,y=x+2=,则P(,)当P点坐标为(,)时,PBC周长最小【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标也考查了待定系数法求二次函数解析式和最短路径问题