《福建省南平市育才中学2023届中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《福建省南平市育才中学2023届中考数学最后一模试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A7.1107B0.71106C7.1107D711082计算3(9)的结果是( )A12B12C6D63若等式x2+ax+19(x5)2b成立,则 a+b的值为()A16B16C4D44下表是某校合唱团成员的年龄分布.年龄/岁13141516频数515x对于不同的x,下列关于年龄的统计量不会发生改变的是( )A众数、中位数B平均数、中位数C平均数、方差D中位数、方差5姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:
3、在每一个象限内,y值随x值的增大而减小根据他们的描述,姜老师给出的这个函数表达式可能是()ABCD6的相反数是A4BCD7等式组的解集在下列数轴上表示正确的是( )ABCD8我国古代数学著作九章算术卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:几个人合伙买一件物品,每人出8元,则余3元;若每人出7元,则少4元,问几人合买?这件物品多少钱?若设有x人合买,这件物品y元,则根据题意列出的二元一次方程组为()ABCD9已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( )A3.61106B
4、3.61107C3.61108D3.6110910下面的图形是轴对称图形,又是中心对称图形的有()A1个B2个C3个D4个11如图,点P是菱形ABCD边上的一动点,它从点A出发沿在ABCD路径匀速运动到点D,设PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A B C D12下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图中有5个棋子,图中有10个棋子,图中有16个棋子,则图_中有个棋子( )A31B35C40D50二、填空题:(本大题共6个小题,每小题4分,共24分)13某校广播台要招聘一批小主持人,对A、B两名小主持人进行了专业素质、创新能力、外语水平和应变能
5、力进行了测试,他们各项的成绩(百分制)如表所示:应聘者专业素质创新能力外语水平应变能力A73857885B81828075如果只招一名主持人,该选用_;依据是_(答案不唯一,理由支撑选项即可)14已知m=,n=,那么2016mn=_15如图,MN是O的直径,MN=4,AMN=40,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为_16某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为 kg17下图是在正方形网格中按规律填成的阴影,根据此规律,则第n个图中阴影部分小正方形的个数是 18反比例函数
6、y=的图象是双曲线,在每一个象限内,y随x的增大而减小,若点A(3,y1),B(1,y2),C(2,y3)都在该双曲线上,则y1、y2、y3的大小关系为_(用“”连接)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍两组各自加工零件的数量(件)与时间(时)的函数图象如图所示(1)求甲组加工零件的数量y与时间之间的函数关系式(2)求乙组加工零件总量的值(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好
7、装满第1箱?再经过多长时间恰好装满第2箱?20(6分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?21(6分)如图,将矩形ABCD绕点A顺时针旋转,得到矩形ABCD,点 C的对应点 C恰好落在CB的延长线上,边AB交边 CD于点E(1)求证:BCBC;(2)若 AB2,BC1,求AE的长22(8分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,
8、根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60,“自行车”对应的扇形圆心角为120,已知七年级乘公交车上学的人数为50人(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?23(8分)如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作ABx轴,交y轴于点D,交该二次函数图象于点B,连结BC(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m0)个单位,使平移后得到的二次函数图象的顶点落在
9、ABC的内部(不包括ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程)24(10分)4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.25(10分)先化简代数式,再从范围内选取一个合适的整数作为的值代入求值。26(12分)先化简,再求值:,其中.27(12分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每
10、天的诵读时间为分钟),将调查统计的结果分为四个等级:级、级、级、级将收集的数据绘制成如下两幅不完整的统计图请根据图中提供的信息,解答下列问题:()请补全上面的条形图()所抽查学生“诵读经典”时间的中位数落在_级()如果该校共有名学生,请你估计该校平均每天“诵读经典”的时间不低于分钟的学生约有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】0.00000071的小数点向或移动7位得到7.1,所以0.000000
11、71用科学记数法表示为7.1107,故选C.【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|-3,解不等式得,x2,在数轴上表示、的解集如图所示,故选B.【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(,向右画;,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示.8、D【解析】根据题意可以找出题目中的等量关系,列出相应的方
12、程组,从而可以解答本题【详解】由题意可得:,故选D【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组9、C【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数解答:解:将361 000 000用科学记数法表示为3.611故选C10、B【解析】根据轴对称图形和中心对称图形的定义对各个图形进行逐一分析即可【详解】解:第一个图形是轴对称图形,但不是中心对称图形;第二个图形是中心对称图形,
13、但不是轴对称图形;第三个图形既是轴对称图形,又是中心对称图形;第四个图形即是轴对称图形,又是中心对称图形;既是轴对称图形,又是中心对称图形的有两个,故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180后两部分重合11、B【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可【详解】分三种情况:当P在AB边上时,如图1,设菱形的高为h,y=APh,AP随x的增大而增大,h不变,y随x的增大而增大,
14、故选项C不正确;当P在边BC上时,如图2,y=ADh,AD和h都不变,在这个过程中,y不变,故选项A不正确;当P在边CD上时,如图3,y=PDh,PD随x的增大而减小,h不变,y随x的增大而减小,P点从点A出发沿ABCD路径匀速运动到点D,P在三条线段上运动的时间相同,故选项D不正确,故选B【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出PAD的面积的表达式是解题的关键12、C【解析】根据题意得出第n个图形中棋子数为1+2+3+n+1+2n,据此可得【详解】解:图1中棋子有5=1+2+12个,图2中棋子有10=1+2+3+22个,图3中棋子有
15、16=1+2+3+4+32个,图6中棋子有1+2+3+4+5+6+7+62=40个,故选C【点睛】本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况二、填空题:(本大题共6个小题,每小题4分,共24分)13、A A的平均成绩高于B平均成绩 【解析】根据表格求出A,B的平均成绩,比较大小即可解题.【详解】解:A的平均数是80.25,B的平均数是79.5,A比B更优秀,如果只招一名主持人,该选用A;依据是A的平均成绩高于B平均成绩.【点睛】本题考查了平均数的实际应用,属于简单题,从表格中找到有用信息是解题关键.14、1【解析】根据积的乘方的性质
16、将m的分子转化为以3和5为底数的幂的积,然后化简从而得到m=n,再根据任何非零数的零次幂等于1解答.【详解】解:m=,m=n,2016m-n=20160=1故答案为:1【点睛】本题考查了同底数幂的除法,积的乘方的性质,难点在于转化m的分母并得到m=n.15、2【解析】过A作关于直线MN的对称点A,连接AB,由轴对称的性质可知AB即为PA+PB的最小值,【详解】解:连接OB,OA,AA,AA关于直线MN对称, AMN=40,AON=80,BON=40,AOB=120,过O作OQAB于Q,在RtAOQ中,OA=2,AB=2AQ= 即PA+PB的最小值.【点睛】本题考查轴对称求最小值问题及解直角三角
17、形,根据轴对称的性质准确作图是本题的解题关键.16、20【解析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg17、n1n1【解析】试题解析:仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,分别为:第一个图有:1+1+1个,第二个图有:4+1+1个,第三个图有:9+3+1个,第n个为n1+n+1.考点:规律型:图形的变化类18、y2y1y1【解析】先根据反比例函数的增减性判断出2-m的符号,再根据反比例函数的性质判断出此函数图象所在的象限,由各点横坐标的值进行判断即可【详解】反比例函数
18、y=的图象是双曲线,在每一个象限内,y随x的增大而减小,2m0,此函数的图象在一、三象限,11y1y2,20,y10,y2y1y1.故答案为y2y1y1.【点睛】本题考查的知识点是反比例函数图像上点的坐标特征,解题的关键是熟练的掌握列反比例函数图像上点的坐标特征.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)见解析(2)300(3)2小时【解析】解:(1)设甲组加工的零件数量y与时间x的函数关系式为根据题意,得,解得所以,甲组加工的零件数量y与时间x的函数关系式为:. (2)当时,因为更换设备后,乙组工作效率是原来的2倍,所以,解得 (3)乙组更
19、换设备后,乙组加工的零件的个数y与时间x的函数关系式为当0x2时,解得舍去当2x2.8时,解得舍去当2.8x4.8时,解得所以,经过3小时恰好装满第1箱当3x4.8时,解得舍去当4.8x6时解得因为53=2,所以,再经过2小时恰好装满第2箱20、(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程【解析】(1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;(2)设乙队施工y天完成该项工程,根据题意列不等式解不等式即可.【详解】(1)由题意知,甲队单独施工完成该项工程所需时间为1=
20、90(天)设乙队单独施工需要x天完成该项工程,则,去分母,得x+1=2x解得x=1经检验x=1是原方程的解答:乙队单独施工需要1天完成(2)设乙队施工y天完成该项工程,则1-解得y2答:乙队至少施工l8天才能完成该项工程21、(1)证明见解析;(2)AE=【解析】(1)连结 AC、AC,根据矩形的性质得到ABC90,即 ABCC, 根据旋转的性质即可得到结论;(2)根据矩形的性质得到 ADBC,DABC90,根据旋转的性质得到 BCAD,ADAD,证得 BCAD,根据全等三角形的性质得到 BEDE,设 AEx,则 DE2x,根据勾股定理列方程即可得到结论【详解】解:(1)连结 AC、AC,四边
21、形 ABCD为矩形,ABC90,即 ABCC,将矩形 ABCD 绕点A顺时针旋转,得到矩形 ABCD,ACAC,BCBC;(2)四边形 ABCD 为矩形,ADBC,DABC90,BCBC,BCAD,将矩形 ABCD 绕点 A 顺时针旋转,得到矩形 ABCD,ADAD,BCAD,在ADE 与CBE中ADECBE,BEDE,设 AEx,则 DE2x,在 RtADE 中,D90, 由勾定理,得 x2(2x)21,解得 x,AE 【点睛】本题考查了旋转的性质,三角形全等的判定和性质,勾股定理的应用等, 熟练掌握性质定理是解题的关键22、(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停
22、车位不足够,理由见解析【解析】分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;(2)根据学校总人数乘以骑自行车所占的百分比,可得答案.详解:(1)乘公交车所占的百分比=,调查的样本容量50=300人,骑自行车的人数300=100人,骑自行车的人数多,多10050=50人;(2)全校骑自行车的人数2400=800人,800600,故学校准备的600个自行车停车位不足够点睛: 本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键扇形统计图直接反映部分占总
23、体的百分比大小.23、(1)y=x2+2x+4;M(1,5);(2)2m4;(3)P1(),P2(),P3(3,1),P4(3,7)【解析】试题分析:(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M的坐标;(2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;(3)由题意分析可得MCP=90,则若PCM与BCD相似,则要进行分类讨论,分成PCMBDC或PCMCDB两种,然后利用边的对应比值求出点坐标试题解析:(1)把点A(3,1),点C(0,4)代入二次函数y=x2+b
24、x+c得,解得 二次函数解析式为y=x2+2x+4, 配方得y=(x1)2+5,点M的坐标为(1,5);(2)设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得, 解得:直线AC的解析式为y=x+4,如图所示,对称轴直线x=1与ABC两边分别交于点E、点F把x=1代入直线AC解析式y=x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1)15m3,解得2m4;(3)连接MC,作MGy轴并延长交AC于点N,则点G坐标为(0,5) MG=1,GC=54=1MC=, 把y=5代入y=x+4解得x=1,则点N坐标为(1,5),NG=GC,GM=GC, NCG=GCM=45,
25、NCM=90,由此可知,若点P在AC上,则MCP=90,则点D与点C必为相似三角形对应点若有PCMBDC,则有BD=1,CD=3, CP=, CD=DA=3, DCA=45,若点P在y轴右侧,作PHy轴, PCH=45,CP= PH=把x=代入y=x+4,解得y=, P1();同理可得,若点P在y轴左侧,则把x=代入y=x+4,解得y= P2();若有PCMCDB,则有 CP=3 PH=3=3,若点P在y轴右侧,把x=3代入y=x+4,解得y=1;若点P在y轴左侧,把x=3代入y=x+4,解得y=7P3(3,1);P4(3,7)所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,
26、1),P4(3,7)考点:二次函数综合题24、今年妹妹6岁,哥哥10岁【解析】试题分析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据两个孩子的对话,即可得出关于x、y的二元一次方程组,解之即可得出结论试题解析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据题意得: 解得: 答:今年妹妹6岁,哥哥10岁考点:二元一次方程组的应用25、-2【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得【详解】原式= = ,x1且x0,在-1x2中符合条件的x的值为x=2,则原式=- =-2.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.26、,4.【解析】
27、先括号内通分,然后计算除法,最后代入化简即可【详解】原式= . 当时,原式=4.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.27、)补全的条形图见解析()级()【解析】试题分析:(1)根据级的人数和所占的百分比即可求出总数,从而求出三级人数,进而补全图形;(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在级;(3)由样本估计总体,由于时间不低于的人数占,故该类学生约有408人试题解析: (1)本次随机抽查的人数为:2040%=50(人)三级人数为:50-13-20-7=10.补图如下:(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在级(3)由样本估计总体,由于时间不低于的人数占,所以该类学生约有