《2023届河南省平顶山市宝丰县重点达标名校中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届河南省平顶山市宝丰县重点达标名校中考数学押题试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )AB1CD2已知二次函数y=(x+a)(xa1),点P(x0,m),点Q(1,n)都在该函数图象上,若mn,则x0的取值范围是()A0x0
2、1B0x01且x0Cx00或x01D0x013如图,ABCD,1=45,3=80,则2的度数为()A30B35C40D454下列计算正确的是()A +BC6D45分式方程的解为( )Ax=-2Bx=-3Cx=2Dx=36某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A(7+x)(5+x)3=75B(7+x)(5+x)=375C(7+2x)(5+2x)3=75D(7+2x)(5+2x)=3757如图,在55的方格纸
3、中将图中的图形N平移到如图所示的位置,那么下列平移正确的是( )A先向下移动1格,再向左移动1格B先向下移动1格,再向左移动2格C先向下移动2格,再向左移动1格D先向下移动2格,再向左移动2格8以下各图中,能确定的是( )ABCD9a、b是实数,点A(2,a)、B(3,b)在反比例函数y=的图象上,则()Aab0Bba0Ca0bDb0a10在数轴上标注了四段范围,如图,则表示的点落在( )A段B段C段D段二、填空题(共7小题,每小题3分,满分21分)11已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为_12如图,在ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重
4、合),ADE=B=,DE交AB于点E,且tan=,有以下的结论:ADEACD;当CD=9时,ACD与DBE全等;BDE为直角三角形时,BD为12或;0BE,其中正确的结论是_(填入正确结论的序号).13某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是_m14下面是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用_枚棋子15_16如图,、分别为ABC的边、延长线上的点,且DEBC如果,CE=16,那么AE的长为_ 17在中,若,则的度数是_三、解答题(共7小题,满分69分)18(10分)解
5、不等式组:,并将它的解集在数轴上表示出来.19(5分)已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k0),直线l2:y=-x-2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N)(1)求抛物y=x2+bx+c线的解析式(2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由(3)设点F、H在直线l1上(点H在点F的下方),当MHF与OAB
6、相似时,求点F、H的坐标(直接写出结果)20(8分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象(1)求y与x的函数关系式;(2)直接写出自变量x的取值范围21(10分)小雁塔位于唐长安城安仁坊(今陕西省西安市南郊)荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志小明在学习了锐角三角函数后,想利用所学知识测量“小雁塔”的高度,小明在一栋高9.982米的建筑物底部D
7、处测得塔顶端A的仰角为45,接着在建筑物顶端C处测得塔顶端A的仰角为37.5已知ABBD,CDBD,请你根据题中提供的相关信息,求出“小雁塔”的高AB的长度(结果精确到1米)(参考数据:sin37.50.61,cos37.50.79,tan37.50.77)22(10分)如图,在ABC中,ACB90,ABC10,CDE是等边三角形,点D在边AB上如图1,当点E在边BC上时,求证DEEB;如图2,当点E在ABC内部时,猜想ED和EB数量关系,并加以证明;如图1,当点E在ABC外部时,EHAB于点H,过点E作GEAB,交线段AC的延长线于点G,AG5CG,BH1求CG的长23(12分)如图,在AB
8、C中,点D,E分别在边AB,AC上,且BE平分ABC,ABE=ACD,BE,CD交于点F(1)求证:;(2)请探究线段DE,CE的数量关系,并说明理由;(3)若CDAB,AD=2,BD=3,求线段EF的长24(14分)在平面直角坐标系xOy中,抛物线yax2+2ax+c(其中a、c为常数,且a0)与x轴交于点A(3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为1(1)求抛物线的表达式;(2)求CAB的正切值;(3)如果点P是x轴上的一点,且ABPCAO,直接写出点P的坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】在:平行四边形、菱形、等边三角形和圆
9、这4个图形中属于中心对称图形的有:平行四边形、菱形和圆三种,从四张卡片中任取一张,恰好是中心对称图形的概率=.故选A.2、D【解析】分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答详解:二次函数y=(x+a)(xa1),当y=0时,x1=a,x2=a+1,对称轴为:x= 当P在对称轴的左侧(含顶点)时,y随x的增大而减小,由mn,得:0x0; 当P在对称轴的右侧时,y随x的增大而增大,由mn,得:x01 综上所述:mn,所求x0的取值范围0x01 故选D点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏3、B【解析】分析:根据平行线
10、的性质和三角形的外角性质解答即可详解:如图,ABCD,1=45,4=1=45,3=80,2=3-4=80-45=35,故选B点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答4、B【解析】根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把 化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断【详解】解:A、与不能合并,所以A选项不正确;B、-=2=,所以B选项正确;C、=,所以C选项不正确;D、=2=2,所以D选项不正确故选B【点睛】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算5、B【解析
11、】解:去分母得:2x=x3,解得:x=3,经检验x=3是分式方程的解故选B6、D【解析】试题分析:由题意得;如图知;矩形的长=7+2x 宽=5+2x 矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=375考点:列方程点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题7、C【解析】根据题意,结合图形,由平移的概念求解.【详解】由方格可知,在55方格纸中将图中的图形N平移后的位置如图所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C【点睛】本题考
12、查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.8、C【解析】逐一对选项进行分析即可得出答案【详解】A中,利用三角形外角的性质可知,故该选项错误;B中,不能确定的大小关系,故该选项错误;C中,因为同弧所对的圆周角相等,所以,故该选项正确;D中,两直线不平行,所以,故该选项错误故选:C【点睛】本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键9、A【解析】解:,反比例函数的图象位于第二、四象限,在每个象限内,y随x的增大而增大,点A(2,a)、B(3,b)在反比例函数的图象上,ab0,故选A10、C【解析】试题分析:121=23
13、2;131=319;15=344;191=45 344445,154191,1419,所以应在段上故选C考点:实数与数轴的关系二、填空题(共7小题,每小题3分,满分21分)11、1【解析】试题解析:如图,菱形ABCD中,BD=8,AB=5,ACBD,OB=BD=4,OA=3,AC=2OA=6,这个菱形的面积为:ACBD=68=112、【解析】试题解析:ADE=B,DAE=BAD,ADEABD;故错误;作AGBC于G,ADE=B=,tan=,cos=,AB=AC=15,BG=1,BC=24,CD=9,BD=15,AC=BDADE+BDE=C+DAC,ADE=C=,EDB=DAC,在ACD与DBE
14、中,ACDBDE(ASA)故正确;当BED=90时,由可知:ADEABD,ADB=AED,BED=90,ADB=90,即ADBC,AB=AC,BD=CD,ADE=B=且tan=,AB=15,BD=1当BDE=90时,易证BDECAD,BDE=90,CAD=90,C=且cos=,AC=15,cosC=,CD=BC=24,BD=24-=即当DCE为直角三角形时,BD=1或故正确;易证得BDECAD,由可知BC=24,设CD=y,BE=x,整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,0x,0BE故错误故正确的结论为:考点:1.相似三角形的判定与性质;2.全等三角形的
15、判定与性质13、1【解析】设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;【详解】设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(1,0)在抛物线上,解得:,抛物线的解析式为:y=x2+2.4,菜农的身高为1.8m,即y=1.8,则1.8=x2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:1米,故答案为114、4n+2【解析】第1个有:6=41+2;第2个有:10=42+2;第3个有:14=43+2;第1个有: 4n+2;故
16、答案为4n+215、【解析】根据去括号法则和合并同类二次根式法则计算即可【详解】解:原式故答案为:【点睛】此题考查的是二次根式的加减运算,掌握去括号法则和合并同类二次根式法则是解决此题的关键16、1【解析】根据DEBC,得到,再代入AC=11-AE,则可求AE长【详解】DEBC,CE=11,解得AE=1故答案为1【点睛】本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键17、【解析】先根据非负数的性质求出,再由特殊角的三角函数值求出与的值,根据三角形内角和定理即可得出结论【详解】在中,故答案为:【点睛】本题考查了非负数的性质以及特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的
17、关键.三、解答题(共7小题,满分69分)18、-1x4,在数轴上表示见解析.【解析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可试题解析:,由得,x4;由得,x1.故不等式组的解集为:1x4.在数轴上表示为:19、(1);(2)以点为圆心,半径长为4的圆与直线相离;理由见解析;(3)点、的坐标分别为、或、或、.【解析】(1)分别把A,B点坐标带入函数解析式可求得b,c即可得到二次函数解析式(2)先求出顶点的坐标,得到直线解析式,再分别求得MN的坐标,再求出NC比较其与4的大小可得圆与直线的位置关系.(3)由题得出tanBAO=,分情况讨论求得F,H坐标.【详解】
18、(1)把点、代入得, 解得, 抛物线的解析式为. (2)由得,顶点的坐标为, 把代入得解得,直线解析式为,设点,代入得,得,设点,代入得,得,由于直线与轴、轴分别交于点、易得、,,点在直线上,即, , 以点为圆心,半径长为4的圆与直线相离. (3)点、的坐标分别为、或、或、.C(-1,-1),A(0,6),B(1,3)可得tanBAO=,情况1:tanCF1M= = , CF1=9,M F1=6,H1F1=5, F1(8,8),H1(3,3);情况2:F2(-5,-5), H2(-10,-10)(与情况1关于L2对称);情况3:F3(8,8), H3(-10,-10)(此时F3与F1重合,H3
19、与H2重合).【点睛】本题考查的知识点是二次函数综合题,解题的关键是熟练的掌握二次函数综合题.20、(1)y=-2x+31,(2)20x1【解析】试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y与x的函数关系式;(2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x的取值范围试题解析:(1)设y与x的函数关系式为y=kx+b,根据题意,得: 解得: y与x的函数解析式为y=-2x+31,(2) 试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元,自变量x的取值范围是20x121、43米
20、【解析】作CEAB于E,则四边形BDCE是矩形,BE=CD=9.982米,设AB=x根据tanACE=,列出方程即可解决问题【详解】解:如图,作CEAB于E则四边形BDCE是矩形,BE=CD=9.982米,设AB=x在RtABD中,ADB=45,AB=BD=x,在RtAEC中,tanACE=tan37.50.77,=0.77,解得x43,答:“小雁塔”的高AB的长度约为43米【点睛】本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题22、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2
21、【解析】(1)、根据等边三角形的性质得出CED=60,从而得出EDB=10,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据ACO和CDE为等边三角形,从而得出ACD和OCE全等,然后得出COE和BOE全等,从而得出答案;(1)、取AB的中点O,连接CO、EO、EB,根据题意得出COE和BOE全等,然后得出CEG和DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案【详解】(1)CDE是等边三角形, CED=60, EDB=60B=10,EDB=B, DE=EB;(2) ED=EB, 理由如下:取AB的中点O,连接CO、EO,ACB=90,
22、ABC=10, A=60,OC=OA, ACO为等边三角形, CA=CO,CDE是等边三角形, ACD=OCE,ACDOCE, COE=A=60,BOE=60, COEBOE, EC=EB, ED=EB;(1)、取AB的中点O,连接CO、EO、EB, 由(2)得ACDOCE,COE=A=60,BOE=60,COEBOE,EC=EB,ED=EB, EHAB,DH=BH=1,GEAB, G=180A=120, CEGDCO, CG=OD,设CG=a,则AG=5a,OD=a,AC=OC=4a,OC=OB, 4a=a+1+1, 解得,a=2,即CG=223、(1)证明见解析;(2)DE=CE,理由见解
23、析;(3) 【解析】试题分析:(1)证明ABEACD,从而得出结论;(2) 先证明CDE=ACD,从而得出结论;(3)解直角三角形示得.试题解析:(1)ABE=ACD,A=A,ABEACD,;(2),又A=A,ADEACB,AED=ABC,AED=ACD+CDE,ABC=ABE+CBE,ACD+CDE=ABE+CBE,ABE=ACD,CDE=CBE,BE平分ABC,ABE=CBE,CDE=ABE=ACD,DE=CE;(3)CDAB,ADC=BDC=90,A+ACD=CDE+ADE=90,ABE=ACD,CDE=ACD,A=ADE,BEC=ABE+A=A+ACD=90,AE=DE,BEAC,DE
24、=CE,AE=DE=CE,AB=BC,AD=2,BD=3,BC=AB=AD+BD=5,在RtBDC中,在RtADC中,ADC=FEC=90, 24、(4)yx44x+3;(4);(3)点P的坐标是(4,0)【解析】(4) 先求得抛物线的对称轴方程, 然后再求得点C的坐标,设抛物线的解析式为ya(x+4)4+4,将点 (-3, 0) 代入求得a的值即可;(4) 先求得A、 B、 C的坐标, 然后依据两点间的距离公式可得到BC、AB,AC的长,然后依据勾股定理的逆定理可证明ABC=90,最后,依据锐角三角函数的定义求解即可;(3) 连接BC,可证得AOB是等腰直角三角形,ACBBPO,可得代入个数
25、据可得OP的值,可得P点坐标.【详解】解:(4)由题意得,抛物线yax4+4ax+c的对称轴是直线,a0,抛物线开口向下,又与x轴有交点,抛物线的顶点C在x轴的上方,由于抛物线顶点C到x轴的距离为4,因此顶点C的坐标是(4,4)可设此抛物线的表达式是ya(x+4)4+4,由于此抛物线与x轴的交点A的坐标是(3,0),可得a4因此,抛物线的表达式是yx44x+3(4)如图4,点B的坐标是(0,3)连接BCAB434+3448,BC444+444,AC444+4440,得AB4+BC4AC4ABC为直角三角形,ABC90,所以tanCAB=即CAB的正切值等于(3)如图4,连接BC,OAOB3,AOB90,AOB是等腰直角三角形,BAPABO45,CAOABP,CABOBP,ABCBOP90,ACBBPO,OP4,点P的坐标是(4,0)【点睛】本题主要考查二次函数的图像与性质,综合性大.