《2022-2023学年河南省平顶山市宝丰县重点达标名校中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年河南省平顶山市宝丰县重点达标名校中考数学适应性模拟试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图所示的几何体的主视图正确的是( )ABCD2若抛物线yx2(m3)xm能与x轴交,则两交点间的距离最值是( )A最大值2,B最小值2C最大值2D最小值23如图,已知正五边形内接于,连结,则的度数是( )ABCD4如图,I是ABC的内心,AI向延长线和ABC的外接圆相交于点D,连接BI,BD,DC下列说
2、法中错误的一项是( )A线段DB绕点D顺时针旋转一定能与线段DC重合B线段DB绕点D顺时针旋转一定能与线段DI熏合CCAD绕点A顺时针旋转一定能与DAB重合D线段ID绕点I顺时针旋转一定能与线段IB重合5如图,二次函数y=ax2+bx+c(a0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中1x10,1x22,下列结论:4a+2b+c0,2a+b0,b2+8a4ac,a1,其中结论正确的有()A1个B2个C3个D4个6若一个正多边形的每个内角为150,则这个正多边形的边数是()A12B11C10D97某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品
3、每件的进价为()A180元B200元C225元D259.2元8如图,CD是O的弦,O是圆心,把O的劣弧沿着CD对折,A是对折后劣弧上的一点,CAD=100,则B的度数是() A100B80C60D509下列哪一个是假命题()A五边形外角和为360B切线垂直于经过切点的半径C(3,2)关于y轴的对称点为(3,2)D抛物线y=x24x+2017对称轴为直线x=210图为小明和小红两人的解题过程下列叙述正确的是( )计算:+A只有小明的正确B只有小红的正确C小明、小红都正确D小明、小红都不正确二、填空题(本大题共6个小题,每小题3分,共18分)11设ABC的面积为1,如图,将边BC、AC分别2等分,
4、BE1、AD1相交于点O,AOB的面积记为S1;如图将边BC、AC分别3等分,BE1、AD1相交于点O,AOB的面积记为S2;,依此类推,则Sn可表示为_(用含n的代数式表示,其中n为正整数)12函数的自变量x的取值范围是_13如图,在ABC中,C=40,CA=CB,则ABC的外角ABD= 14已知线段a=4,b=1,如果线段c是线段a、b的比例中项,那么c=_15股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_
5、16如图,点A在双曲线上,ABx轴于B,且AOB的面积SAOB=2,则k=_三、解答题(共8题,共72分)17(8分)如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率18(8分)如图,一次函数的图象与反比例函数的图象交于,B两点(1)求一次函数与反比例函数的解析式;(2)结合图形,直接写出一次函数大于反比例函数时自变量x的取值范围19(8分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF求证:EAAF20(8分)给出如下定义:对于O的弦MN和O外一点P(M,O,
6、N三点不共线,且点P,O在直线MN的异侧),当MPN+MON180时,则称点P是线段MN关于点O的关联点图1是点P为线段MN关于点O的关联点的示意图在平面直角坐标系xOy中,O的半径为1(1)如图2,已知M(,),N(,),在A(1,0),B(1,1),C(,0)三点中,是线段MN关于点O的关联点的是 ;(2)如图3,M(0,1),N(,),点D是线段MN关于点O的关联点MDN的大小为 ;在第一象限内有一点E(m,m),点E是线段MN关于点O的关联点,判断MNE的形状,并直接写出点E的坐标;点F在直线yx+2上,当MFNMDN时,求点F的横坐标x的取值范围21(8分)已知:如图,AB为O的直径
7、,C是BA延长线上一点,CP切O于P,弦PDAB于E,过点B作BQCP于Q,交O于H,(1)如图1,求证:PQPE;(2)如图2,G是圆上一点,GAB30,连接AG交PD于F,连接BF,若tanBFE3,求C的度数;(3)如图3,在(2)的条件下,PD6,连接QC交BC于点M,求QM的长22(10分)如图,O是ABC的外接圆,AE平分BAC交O于点E,交BC于点D,过点E做直线lBC(1)判断直线l与O的位置关系,并说明理由;(2)若ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长23(12分)每年4月23日是世界读书日,某校为了解学生
8、课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30608150401101301469010060811201407081102010081整理数据:课外阅读平均时间x(min)0x4040x8080x120120x160等级DCBA人数3a8b分析数据:平均数中位数众数80mn请根据以上提供的信息,解答下列问题:(1)填空:a,b;m,n;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一
9、年(按52周计)平均阅读多少本课外书?24如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方米处的点C出发,沿斜面坡度的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,ABBC,AB/DE.求旗杆AB的高度.(参考数据:sin37,cos37,tan37.计算结果保留根号)参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】主视图是从前向后看,即可得图像.【详解】主视图是一个矩形和一个三角形构成.故选D.2、D【解析】设抛物线与x轴的两交点间的横坐标分别为:x1,x2,由韦达定理得
10、:x1+x2=m-3,x1x2=-m,则两交点间的距离d=|x1-x2|= ,m=1时,dmin=2故选D.3、C【解析】根据多边形内角和定理、正五边形的性质求出ABC、CD=CB,根据等腰三角形的性质求出CBD,计算即可【详解】五边形为正五边形故选:C【点睛】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)180是解题的关键4、D【解析】解:I是ABC的内心,AI平分BAC,BI平分ABC,BAD=CAD,ABI=CBI,故C正确,不符合题意;=,BD=CD,故A正确,不符合题意;DAC=DBC,BAD=DBCIBD=IBC+DBC,BID=A
11、BI+BAD,DBI=DIB,BD=DI,故B正确,不符合题意故选D点睛:本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等5、D【解析】由抛物线的开口向下知a0,对称轴为x= 1,a0,2a+b0,当x=2时,y=4a+2b+c2,4ac4ac,a+b+c=2,则2a+2b+2c=4,4a+2b+c0,ab+c0.由,得到2a+2c2,由,得到2ac4,4a2c8,上面两个相加得到6a6,a1.故选D.点睛:本题考查了二次函数图象与系数的关系,二次函数 中,a的符号由抛物线的开口方向决定;c的符号由抛物线与y轴交点的位置决定;b的符号由对称轴位置与a的符号决定
12、;抛物线与x轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点.6、A【解析】根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180150=30,再根据多边形外角和为360度即可求出边数【详解】一个正多边形的每个内角为150,这个正多边形的每个外角=180150=30,这个正多边形的边数=1故选:A【点睛】本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质7、A【解析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程2700.8x0.2x,解得x180.故
13、选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.8、B【解析】试题分析:如图,翻折ACD,点A落在A处,可知A=A=100,然后由圆内接四边形可知A+B=180,解得B=80.故选:B9、C【解析】分析:根据每个选项所涉及的数学知识进行分析判断即可.详解:A选项中,“五边形的外角和为360”是真命题,故不能选A;B选项中,“切线垂直于经过切点的半径”是真命题,故不能选B;C选项中,因为点(3,-2)关于y轴的对称点的坐标是(-3,-2),所以该选项中的命题是假命题,所以可以选C;D选项中,“抛物线y=x24x+2017对称轴为直线x=2”
14、是真命题,所以不能选D.故选C.点睛:熟记:(1)凸多边形的外角和都是360;(2)切线的性质;(3)点P(a,b)关于y轴的对称点为(-a,b);(4)抛物线的对称轴是直线: 等数学知识,是正确解答本题的关键.10、D【解析】直接利用分式的加减运算法则计算得出答案【详解】解:+,故小明、小红都不正确故选:D【点睛】此题主要考查了分式的加减运算,正确进行通分运算是解题关键二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】试题解析:如图,连接D1E1,设AD1、BE1交于点M,AE1:AC=1:(n+1),SABE1:SABC=1:(n+1),SABE1=,SABM:SABE1=
15、(n+1):(2n+1),SABM:=(n+1):(2n+1),Sn=故答案为12、x1【解析】根据分母不等于2列式计算即可得解【详解】由题意得,x-12,解得x1故答案为x1【点睛】本题考查的知识点为:分式有意义,分母不为213、110【解析】试题解析:解:C40,CACB,AABC70,ABDAC110.考点:等腰三角形的性质、三角形外角的性质点评:本题主要考查了等腰三角形的性质、三角形外角的性质.等腰三角形的两个底角相等;三角形的外角等于与它不相邻的两个内角之和.14、1【解析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负【详解】根据比例中项的概念结合比例的基本性质,得:
16、比例中项的平方等于两条线段的乘积则c1=41,c=1,(线段是正数,负值舍去),故c=1故答案为1【点睛】本题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数15、.【解析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能10%,设这两天此股票股价的平均增长率为x,每天相对于前一天就上涨到1+x,由此列出方程解答即可【详解】设这两天此股票股价的平均增长率为x,由题意得(110%)(1+x)21故答案为:(110%)(1+x)21【点睛】本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为,变化后的量为,平均变化率为,
17、则经过两次变化后的数量关系为16、4【解析】:由反比例函数解析式可知:系数,SAOB=2即,;又由双曲线在二、四象限k0,k=-4三、解答题(共8题,共72分)17、【解析】根据列表法先画出列表,再求概率.【详解】解:列表如下:23562(2,3)(2,5)(2,6)3(3,2)(3,5)(3,6)5(5,2)(5,3)(5,6)6(6,2)(6,3)(6,5)由表可知共有12种等可能结果,其中数字之和为偶数的有4种,所以P(数字之和都是偶数)【点睛】此题重点考查学生对概率的应用,掌握列表法是解题的关键.18、(1);(2)或;【解析】(1)利用点A的坐标可求出反比例函数解析式,再把B(4,n
18、)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数时自变量x的取值范围【详解】(1)过点, ,反比例函数的解析式为;点在上,一次函数过点,解得:一次函数解析式为;(2)由图可知,当或时,一次函数值大于反比例函数值【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式19、见解析【解析】根据条件可以得出AD=AB,ABF=ADE=90,从而可以得出ABFADE,就可以得出FAB=EAD,就可以得出结论【详解】证明:四边形ABCD是正方形,AB=AD,ABC=D=BA
19、D=90,ABF=90在BAF和DAE中, ,BAFDAE(SAS),FAB=EAD,EAD+BAE=90,FAB+BAE=90,FAE=90,EAAF20、(1)C;(2)60;E(,1);点F的横坐标x的取值范围xF【解析】(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件;(2)如图3-1中,作NHx轴于H求出MON的大小即可解决问题;如图3-2中,结论:MNE是等边三角形由MON+MEN=180,推出M、O、N、E四点共圆,可得MNE=MOE=60,由此即可解决问题;如图3-3中,由可知,MNE是等边三角形,作MNE的外接圆O,首先证明点E在
20、直线y=-x+2上,设直线交O于E、F,可得F(,),观察图形即可解决问题;【详解】(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件,故答案为C(2)如图3-1中,作NHx轴于HN(,-),tanNOH=,NOH=30,MON=90+30=120,点D是线段MN关于点O的关联点,MDN+MON=180,MDN=60故答案为60如图3-2中,结论:MNE是等边三角形理由:作EKx轴于KE(,1),tanEOK=,EOK=30,MOE=60,MON+MEN=180,M、O、N、E四点共圆,MNE=MOE=60,MEN=60,MEN=MNE=NME=60
21、,MNE是等边三角形如图3-3中,由可知,MNE是等边三角形,作MNE的外接圆O,易知E(,1),点E在直线y=-x+2上,设直线交O于E、F,可得F(,),观察图象可知满足条件的点F的横坐标x的取值范围xF【点睛】此题考查一次函数综合题,直线与圆的位置关系,等边三角形的判定和性质,锐角三角函数,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题21、(1)证明见解析(2)30(3) QM=【解析】试题分析:(1)连接OP,PB,由已知易证OBP=OPB=QBP,从而可得BP平分OBQ,结合BQCP于点Q,PEAB于点E即可由角平分线的性质得到PQ=PE;(2)如下图2,连接OP,
22、则由已知易得CPO=PEC=90,由此可得C=OPE,设EF=x,则由GAB=30,AEF=90可得AE=,在RtBEF中,由tanBFE=可得BE=,从而可得AB=,则OP=OA=,结合AE=可得OE=,这样即可得到sinOPE=,由此可得OPE=30,则C=30;(3)如下图3,连接BG,过点O作OKHB于点K,结合BQCP,OPQ=90,可得四边形POKQ为矩形由此可得QK=PO,OKCQ从而可得KOB=C=30;由已知易证PE=,在RtEPO中结合(2)可解得PO=6,由此可得OB=QK=6;在RtKOB中可解得KB=3,由此可得QB=9;在ABG中由已知条件可得BG=6,ABG=60
23、;过点G作GNQB交QB的延长线于点N,由ABG=CBQ=60,可得GBN=60,从而可得解得GN=,BN=3,由此可得QN=12,则在RtBGN中可解得QG=,由ABG=CBQ=60可知BQG中BM是角平分线,由此可得QM:GM=QB:GB=9:6由此即可求得QM的长了.试题解析:(1)如下图1,连接OP,PB,CP切O于P,OPCP于点P,又BQCP于点Q,OPBQ,OPB=QBP,OP=OB,OPB=OBP,QBP=OBP,又PEAB于点E,PQ=PE;(2)如下图2,连接,CP切O于P,PDAB 在Rt中,GAB=30设EF=x,则在Rt中,tanBFE=3 在RtPEO中, 30;(
24、3)如下图3,连接BG,过点O作于K,又BQCP,四边形POKQ为矩形,QK=PO,OK/CQ,30,O 中PDAB于E ,PD=6 ,AB为O的直径,PE= PD= 3,根据(2)得,在RtEPO中,OB=QK=PO=6,在Rt中, ,QB=9,在ABG中,AB为O的直径,AGB=90,BAG=30,BG=6,ABG=60,过点G作GNQB交QB的延长线于点N,则N=90,GBN=180-CBQ-ABG=60,BN=BQcosGBQ=3,GN=BQsinGBQ=,QN=QB+BN=12,在RtQGN中,QG=,ABG=CBQ=60,BM是BQG的角平分线,QM:GM=QB:GB=9:6,QM
25、=.点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ、BG的长及CBQ=ABG=60;(2)再过点G作GNQB并交QB的延长线于点N,解出BN和GN的长,这样即可在RtQGN中求得QG的长,最后在BQG中“由角平分线分线段成比例定理”即可列出比例式求得QM的长了.22、(1)直线l与O相切;(2)证明见解析;(3)【解析】试题分析:(1)连接OE、OB、OC由题意可证明,于是得到BOE=COE,由等腰三角形三线合一的性质可证明OEBC,于是可证明OEl,故此可证明直线l与O相切;(2)先由角平分线的定义可知ABF=CBF,然后再证明CBE=BAF,于是可
26、得到EBF=EFB,最后依据等角对等边证明BE=EF即可;(3)先求得BE的长,然后证明BEDAEB,由相似三角形的性质可求得AE的长,于是可得到AF的长试题解析:(1)直线l与O相切理由如下:如图1所示:连接OE、OB、OCAE平分BAC,BAE=CAEBOE=COE又OB=OC,OEBClBC,OEl直线l与O相切(2)BF平分ABC,ABF=CBF又CBE=CAE=BAE,CBE+CBF=BAE+ABF又EFB=BAE+ABF,EBF=EFBBE=EF(3)由(2)得BE=EF=DE+DF=1DBE=BAE,DEB=BEA,BEDAEB,即,解得;AE=,AF=AEEF=1=考点:圆的综
27、合题23、(1)a5,b4;m81,n81;(2)300人;(3)16本【解析】(1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;(2)达标的学生人数总人数达标率,依此即可求解;(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果【详解】解:(1)由统计表收集数据可知a5,b4,m81,n81;(2)(人)答:估计达标的学生有300人;(3)805226016(本)答:估计该校学生每人一年(按52周计算)平均阅读16本课外书【点睛】本题主要考查统计表以及中位数,众数,估计达标人数等,能够从统计表中获取有效信息是解题的关键.24、3+3.5【解析
28、】延长ED交BC延长线于点F,则CFD=90,RtCDF中求得CF=CDcosDCF=2、DF=CD=2,作EGAB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtanAEG=4tan37可得答案【详解】如图,延长ED交BC延长线于点F,则CFD=90,tanDCF=i=,DCF=30,CD=4,DF=CD=2,CF=CDcosDCF=4=2,BF=BC+CF=2+2=4,过点E作EGAB于点G,则GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又AED=37,AG=GEtanAEG=4tan37,则AB=AG+BG=4tan37+3.5=3+3.5,故旗杆AB的高度为(3+3.5)米考点:1、解直角三角形的应用仰角俯角问题;2、解直角三角形的应用坡度坡角问题