上海市洋泾中学2023届高考冲刺数学模拟试题含解析.doc

上传人:茅**** 文档编号:87837973 上传时间:2023-04-18 格式:DOC 页数:19 大小:1.90MB
返回 下载 相关 举报
上海市洋泾中学2023届高考冲刺数学模拟试题含解析.doc_第1页
第1页 / 共19页
上海市洋泾中学2023届高考冲刺数学模拟试题含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《上海市洋泾中学2023届高考冲刺数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《上海市洋泾中学2023届高考冲刺数学模拟试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方形及正方形内一段圆弧组成,则这个几何体的表面积是( )ABCD2已知函数.设,若对任意不相等的正数,恒有,则

2、实数a的取值范围是( )ABCD3已知.给出下列判断:若,且,则;存在使得的图象向右平移个单位长度后得到的图象关于轴对称;若在上恰有7个零点,则的取值范围为;若在上单调递增,则的取值范围为.其中,判断正确的个数为( )A1B2C3D44已知向量,则( )ABC()D( )5已知函数,则下列结论中正确的是函数的最小正周期为;函数的图象是轴对称图形;函数的极大值为;函数的最小值为ABCD6已知函数(,是常数,其中且)的大致图象如图所示,下列关于,的表述正确的是( )A,B,C,D,7已知集合,则=( )ABCD8已知函数,给出下列四个结论:函数的值域是;函数为奇函数;函数在区间单调递减;若对任意,

3、都有成立,则的最小值为;其中正确结论的个数是( )ABCD9已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( )ABCD10函数满足对任意都有成立,且函数的图象关于点对称,则的值为( )A0B2C4D111已知复数在复平面内对应的点的坐标为,则下列结论正确的是( )AB复数的共轭复数是CD12设函数(,为自然对数的底数),定义在上的函数满足,且当时,若存在,且为函数的一个零点,则实数的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设,则_.14设O为坐标原点, ,若点B(x,y)满足,则的最大值是_15

4、已知,则的值为_.16过抛物线C:()的焦点F且倾斜角为锐角的直线l与C交于A,B两点,过线段的中点N且垂直于l的直线与C的准线交于点M,若,则l的斜率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若在上为单调函数,求实数a的取值范围:(2)若,记的两个极值点为,记的最大值与最小值分别为M,m,求的值.18(12分)已知(1)已知关于的不等式有实数解,求的取值范围;(2)求不等式的解集19(12分)已知a0,证明:120(12分)已知,证明:(1);(2).21(12分)如图,在四棱锥中,底面是边长为2的菱形,.(1)证明:平面平面ABCD;

5、(2)设H在AC上,若,求PH与平面PBC所成角的正弦值.22(10分)本小题满分14分)已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线截得的线段的长度参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】画出直观图,由球的表面积公式求解即可【详解】这个几何体的直观图如图所示,它是由一个正方体中挖掉个球而形成的,所以它的表面积为.故选:C【点睛】本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力.2、D【解析】求解的导函数,研究其单调性

6、,对任意不相等的正数,构造新函数,讨论其单调性即可求解.【详解】的定义域为,当时,故在单调递减;不妨设,而,知在单调递减,从而对任意、,恒有,即,令,则,原不等式等价于在单调递减,即,从而,因为,所以实数a的取值范围是故选:D.【点睛】此题考查含参函数研究单调性问题,根据参数范围化简后构造新函数转换为含参恒成立问题,属于一般性题目.3、B【解析】对函数化简可得,进而结合三角函数的最值、周期性、单调性、零点、对称性及平移变换,对四个命题逐个分析,可选出答案.【详解】因为,所以周期.对于,因为,所以,即,故错误;对于,函数的图象向右平移个单位长度后得到的函数为,其图象关于轴对称,则,解得,故对任意

7、整数,所以错误;对于,令,可得,则,因为,所以在上第1个零点,且,所以第7个零点,若存在第8个零点,则,所以,即,解得,故正确;对于,因为,且,所以,解得,又,所以,故正确.故选:B.【点睛】本题考查三角函数的恒等变换,考查三角函数的平移变换、最值、周期性、单调性、零点、对称性,考查学生的计算求解能力与推理能力,属于中档题.4、D【解析】由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【详解】向量(1,2),(3,1),和的坐标对应不成比例,故、不平行,故排除A;显然,3+20,故、不垂直,故排除B;(2,1),显然,和的坐标对应不成比例,故和不平行,故排除C;()2

8、+20,故 (),故D正确,故选:D.【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.5、D【解析】因为,所以不正确;因为,所以,所以,所以函数的图象是轴对称图形,正确;易知函数的最小正周期为,因为函数的图象关于直线对称,所以只需研究函数在上的极大值与最小值即可当时,且,令,得,可知函数在处取得极大值为,正确;因为,所以,所以函数的最小值为,正确故选D6、D【解析】根据指数函数的图象和特征以及图象的平移可得正确的选项.【详解】从题设中提供的图像可以看出,故得,故选:D【点睛】本题考查图象的平移以及指数函数的图象和特征,本题属于基础题.7、C【解析】计算,再计算

9、交集得到答案.【详解】,故.故选:.【点睛】本题考查了交集运算,意在考查学生的计算能力.8、C【解析】化的解析式为可判断,求出的解析式可判断,由得,结合正弦函数得图象即可判断,由得可判断.【详解】由题意,所以,故正确;为偶函数,故错误;当时,单调递减,故正确;若对任意,都有成立,则为最小值点,为最大值点,则的最小值为,故正确.故选:C.【点睛】本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.9、B【解析】计算求半径为,再计算球体积和圆锥体积,计算得到答案.【详解】如图所示:设球半径为,则,解得.故求体积为:,圆锥的体积:,故.故选:.

10、【点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.10、C【解析】根据函数的图象关于点对称可得为奇函数,结合可得是周期为4的周期函数,利用及可得所求的值.【详解】因为函数的图象关于点对称,所以的图象关于原点对称,所以为上的奇函数.由可得,故,故是周期为4的周期函数.因为,所以.因为,故,所以.故选:C.【点睛】本题考查函数的奇偶性和周期性,一般地,如果上的函数满足,那么是周期为的周期函数,本题属于中档题.11、D【解析】首先求得,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项.【详解】由题意知复数,则,所以A选项不正

11、确;复数的共轭复数是,所以B选项不正确;,所以C选项不正确;,所以D选项正确.故选:D【点睛】本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等基础知识;考查运算求解能力,推理论证能力,数形结合思想.12、D【解析】先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.【详解】构造函数,因为,所以,所以为奇函数,当时,所以在上单调递减,所以在R上单调递减.因为存在,所以,所以,化简得,所以,即令,因为为函数的一个零点,所以在时有一个零点因为当时,所以函数在时单调递减,由选项知,又因为,所以要使在时有一个零点,只需使,解得,所以a的取值范围为,故选D

12、.【点睛】本题主要考查函数与方程的综合问题,难度较大.二、填空题:本题共4小题,每小题5分,共20分。13、121【解析】在所给的等式中令,,令,可得2个等式,再根据所得的2个等式即可解得所求.【详解】令,得,令,得,两式相加,得,所以.故答案为:.【点睛】本题主要考查二项式定理的应用,考查学生分析问题的能力,属于基础题,难度较易.14、【解析】 ,可行域如图,直线 与圆 相切时取最大值,由 15、【解析】先求,再根据的范围求出即可.【详解】由题可知,故.故答案为:.【点睛】本题考查分段函数函数值的求解,涉及对数的运算,属基础题.16、【解析】分别过A,B,N作抛物线的准线的垂线,垂足分别为,

13、根据抛物线定义和求得,从而求得直线l的倾斜角.【详解】分别过A,B,N作抛物线的准线的垂线,垂足分别为,由抛物线的定义知,因为,所以,所以,即直线的倾斜角为,又直线与直线l垂直且直线l的倾斜角为锐角,所以直线l的倾斜角为,.故答案为:【点睛】此题考查抛物线的定义,根据已知条件做出辅助线利用抛物线定义和几何关系即可求解,属于较易题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)求导.根据单调,转化为对恒成立求解(2)由(1)知,是的两个根,不妨设,令. 根据,确定,将转化为. 令,用导数法研究其单调性求最值.【详解】(1)的定义域为,.因为单调

14、,所以对恒成立,所以,恒成立,因为,当且仅当时取等号,所以;(2)由(1)知,是的两个根.从而,不妨设,则. 因为,所以t为关于a的减函数,所以. 令,则. 因为当时,在上为减函数.所以当时,.从而,所以在上为减函数.所以当时,.【点睛】本题主要考查导数在函数中的综合应用,还考查了转化化归的思想和运算求解的能力,属于难题.18、(1);(2).【解析】(1)依据能成立问题知,然后利用绝对值三角不等式求出的最小值,即求得的取值范围;(2)按照零点分段法解含有两个绝对值的不等式即可。【详解】因为不等式有实数解,所以因为,所以故。当时,所以,故当时,所以,故当时,所以,故综上,原不等式的解集为。【点

15、睛】本题主要考查不等式有解问题的解法以及含有两个绝对值的不等式问题的解法,意在考查零点分段法、绝对值三角不等式和转化思想、分类讨论思想的应用。19、证明见解析【解析】利用分析法,证明a即可【详解】证明:a0,a1,a10,要证明1,只要证明a1(a)14(a)+4,只要证明:a,a1,原不等式成立【点睛】本题考查不等式的证明,着重考查分析法的运用,考查推理论证能力,属于中档题20、(1)证明见解析(2)证明见解析【解析】(1)先由基本不等式可得,而,即得证;(2)首先推导出,再利用,展开即可得证.【详解】证明:(1),(当且仅当时取等号).(2),.【点睛】本题考查不等式的证明,考查基本不等式

16、的运用,考查逻辑推理能力,属于中档题21、(1)见解析;(2)【解析】(1)记,连结,推导出,平面,由此能证明平面平面;(2)推导出,平面,连结,由题意得为的重心,从而平面平面,进而是与平面所成角,由此能求出与平面所成角的正弦值【详解】(1)证明:记,连结,中,平面,平面,平面平面(2)中,平面,连结,由题意得为的重心,平面平面平面,在平面的射影落在上,是与平面所成角,中,与平面所成角的正弦值为【点睛】本题考查面面垂直的证明,考查线面角的正弦值的求法,考查线线、线面、面面的位置关系等基础知识,考查运算求解能力,是中档题22、【解析】解:解:将曲线的极坐标方程化为直角坐标方程为,即,它表示以为圆心,2为半径圆, 4分直线方程的普通方程为, 8分圆C的圆心到直线l的距离,10分故直线被曲线截得的线段长度为14分

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁