《上海市奉贤中学2023届高三下第一次测试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《上海市奉贤中学2023届高三下第一次测试数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1运行如图所示的程序框图,若输出的的值为99,则判断框中可以填( )ABCD2将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为( )ABCD3若,则下列不等式不能成立的是( )ABCD4已知函数且的图象恒过定点,则函数图
2、象以点为对称中心的充要条件是( )ABCD5已知函数,下列结论不正确的是( )A的图像关于点中心对称B既是奇函数,又是周期函数C的图像关于直线对称D的最大值是6已知函数,则,的大小关系为( )ABCD7设直线过点,且与圆:相切于点,那么( )AB3CD18已知实数、满足不等式组,则的最大值为()ABCD9已知函数,若,则的最小值为( )参考数据:ABCD10设,则( )ABCD11某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为( )A1B2C3D012设,满足,则的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13函数的图像如图所示,则该函数的最小正
3、周期为_.14某种产品的质量指标值服从正态分布,且某用户购买了件这种产品,则这件产品中质量指标值位于区间之外的产品件数为_15四面体中,底面,则四面体的外接球的表面积为_16在平面直角坐标系中,若函数在处的切线与圆存在公共点,则实数的取值范围为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,正方体的棱长为2,为棱的中点.(1)面出过点且与直线垂直的平面,标出该平面与正方体各个面的交线(不必说明画法及理由);(2)求与该平面所成角的正弦值.18(12分)已知抛物线的准线过椭圆C:(ab0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4.(1)求椭
4、圆C的标准方程;(2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程.19(12分)已知点到抛物线C:y1=1px准线的距离为1()求C的方程及焦点F的坐标;()设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,直线PA,PB,分别交x轴于M,N两点,求的值20(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程以及曲线的直角坐标方程;(2)若直线与曲线、曲线在第一象限交于两点,且,点的坐标为,求的面积.21(12
5、分)在直角坐标系中,椭圆的左、右焦点分别为,点在椭圆上且轴,直线交轴于点,椭圆的离心率为.(1)求椭圆的方程;(2)过的直线交椭圆于两点,且满足,求的面积.22(10分)已知函数.(1)当时,不等式恒成立,求的最小值;(2)设数列,其前项和为,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】模拟执行程序框图,即可容易求得结果.【详解】运行该程序:第一次,;第二次,;第三次,;第九十八次,;第九十九次,此时要输出的值为99.此时.故选:C.【点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断
6、条件的选择,属基础题.2、B【解析】由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【详解】由题可知,对其向左平移个单位长度后,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.3、B【解析】根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.4、A【解析】由题
7、可得出的坐标为,再利用点对称的性质,即可求出和.【详解】根据题意,所以点的坐标为,又 ,所以.故选:A.【点睛】本题考查指数函数过定点问题和函数对称性的应用,属于基础题.5、D【解析】通过三角函数的对称性以及周期性,函数的最值判断选项的正误即可得到结果【详解】解:,正确;,为奇函数,周期函数,正确;,正确;D: ,令,则,则时,或时,即在上单调递增,在和上单调递减;且,故D错误故选:【点睛】本题考查三角函数周期性和对称性的判断,利用导数判断函数最值,属于中档题6、B【解析】可判断函数在上单调递增,且,所以.【详解】在上单调递增,且,所以.故选:B【点睛】本题主要考查了函数单调性的判定,指数函数
8、与对数函数的性质,利用单调性比大小等知识,考查了学生的运算求解能力.7、B【解析】过点的直线与圆:相切于点,可得.因此,即可得出.【详解】由圆:配方为,半径.过点的直线与圆:相切于点,;故选:B.【点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.8、A【解析】画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案【详解】画出不等式组所表示平面区域,如图所示,由目标函数,化为直线,当直线过点A时,此时直线在y轴上的截距最大,目标函数取得最大值,又由,解得,所以目标函数的最大值为,故选A【点睛】本题主要考查简单线性规划求解目标函数的最值问题其中解答中正确
9、画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题9、A【解析】首先的单调性,由此判断出,由求得的关系式.利用导数求得的最小值,由此求得的最小值.【详解】由于函数,所以在上递减,在上递增.由于,令,解得,所以,且,化简得,所以,构造函数,.构造函数,所以在区间上递减,而,所以存在,使.所以在上大于零,在上小于零.所以在区间上递增,在区间上递减.而,所以在区间上的最小值为,也即的最小值为,所以的最小值为.故选:A【点睛】本小题主要考查利用导数研究函数的最值,考查分段函数的图像与性质,考查化归与转化的数学思想方
10、法,属于难题.10、A【解析】先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【详解】,因此,故选:A.【点睛】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.11、C【解析】由三视图还原原几何体,借助于正方体可得三棱锥的表面中直角三角形的个数.【详解】由三视图还原原几何体如图,其中,为直角三角形.该三棱锥的表面中直角三角形的个数为3.故选:C.【点睛】本小题主要考查由三视图还原为原图,属于基础题.12、C【解析】首先绘制出可行域,再绘制出目标函数,根据可行域范围求出目标函数中的取值范围.【详解】由题知,满足,可行域如下图所示,可
11、知目标函数在点处取得最小值,故目标函数的最小值为,故的取值范围是.故选:D.【点睛】本题主要考查了线性规划中目标函数的取值范围的问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据图象利用,先求出的值,结合求出,然后利用周期公式进行求解即可【详解】解:由,得,则,即,则函数的最小正周期,故答案为:8【点睛】本题主要考查三角函数周期的求解,结合图象求出函数的解析式是解决本题的关键14、【解析】直接计算,可得结果.【详解】由题可知:则质量指标值位于区间之外的产品件数:故答案为:【点睛】本题考查正太分布中原则,审清题意,简单计算,属基础题.15、【解析】由题意画出图形
12、,补形为长方体,求其对角线长,可得四面体外接球的半径,则表面积可求【详解】解:如图,在四面体中,底面,可得,补形为长方体,则过一个顶点的三条棱长分别为1,1,则长方体的对角线长为,则三棱锥的外接球的半径为1其表面积为故答案为:【点睛】本题考查多面体外接球表面积的求法,补形是关键,属于中档题16、【解析】利用导数的几何意义可求得函数在处的切线,再根据切线与圆存在公共点,利用圆心到直线的距离满足的条件列式求解即可.【详解】解:由条件得到 又所以函数在处的切线为,即圆方程整理可得:即有圆心且所以圆心到直线的距离,即.解得或,故答案为:【点睛】本题主要考查了导数的几何意义求解切线方程的问题,同时也考查
13、了根据直线与圆的位置关系求解参数范围的问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2).【解析】(1)与平面垂直,过点作与平面平行的平面即可(2)建立空间直角坐标系求线面角正弦值【详解】解:(1)截面如下图所示:其中,分别为边,的中点,则垂直于平面.(2)建立如图所示的空间直角坐标系,则,所以,.设平面的一个法向量为,则.不妨取,则,所以与该平面所成角的正弦值为.(若将作为该平面法向量,需证明与该平面垂直)【点睛】考查确定平面的方法以及线面角的求法,中档题.18、(1);(2)或.【解析】(1)由抛物线的准线方程求出的值,确定左焦点坐标,
14、再由点F到直线l:的距离为4,求出即可;(2)设直线方程,与椭圆方程联立,运用根与系数关系和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.【详解】(1)抛物线的准线方程为,直线,点F到直线l的距离为,所以椭圆的标准方程为;(2)依题意斜率不为0,又过点,设方程为,联立,消去得,设,线段AB的中垂线交直线l于点Q,所以横坐标为3,平方整理得,解得或(舍去),所求的直线方程为或.【点睛】本题考查椭圆的方程以及直线与椭圆的位置关系,要熟练应用根与系数关系、相交弦长公式,合理运用两点间的距离公式,考查计算求解能力,属于中档题.19、 ()C的方程为,焦点F的坐标为(1,0);(
15、)1【解析】()根据抛物线定义求出p,即可求C的方程及焦点F的坐标;()设点A(x1,y1),B(x1,y1),由已知得Q(1,1),由题意直线AB斜率存在且不为0,设直线AB的方程为y=k(x+1)1(k0),与抛物线联立可得ky1-4y+4k-8=0,利用韦达定理以及弦长公式,转化求解|MF|NF|的值【详解】()由已知得,所以p=1.所以抛物线C的方程为,焦点F的坐标为(1,0);(II)设点A(x1,y1),B(x1,y1),由已知得Q(1,1),由题意直线AB斜率存在且不为0.设直线AB的方程为y=k(x+1)1(k0).由得,则,.因为点A,B在抛物线C上,所以,.因为PFx轴,所
16、以,所以|MF|NF|的值为1.【点睛】本题考查抛物线的定义、标准方程及直线与抛物线中的定值问题,常用韦达定理设而不求来求解,本题解题关键是找出弦长与斜率之间的关系进行求解,属于中等题.20、(1)的极坐标方程为,的直角坐标方程为(2)【解析】(1)先把曲线的参数方程消参后,转化为普通方程,再利用 求得极坐标方程.将,化为,再利用 求得曲线的普通方程.(2)设直线的极角,代入,得,将代入,得,由,得,即,从而求得,从而求得,再利用求解.【详解】(1)依题意,曲线,即,故,即.因为,故,即,即.(2)将代入,得,将代入,得,由,得,得,解得,则.又,故,故的面积.【点睛】本题考查极坐标方程与直角
17、坐标方程、参数方程与普通方程的转化、极坐标的几何意义,还考查推理论证能力以及数形结合思想,属于中档题.21、(1);(2).【解析】(1)根据离心率以及,即可列方程求得,则问题得解;(2)设直线方程为,联立椭圆方程,结合韦达定理,根据题意中转化出的,即可求得参数,则三角形面积得解.【详解】(1)设,由题意可得.因为是的中位线,且,所以,即,因为进而得,所以椭圆方程为(2)由已知得两边平方整理可得.当直线斜率为时,显然不成立.直线斜率不为时,设直线的方程为,联立消去,得,所以,由得将代入整理得,展开得,整理得,所以.即为所求.【点睛】本题考查由离心率求椭圆的方程,以及椭圆三角形面积的求解,属综合
18、中档题.22、(1);(2)证明见解析.【解析】(1),分,三种情况推理即可;(2)由(1)可得,即,利用累加法即可得到证明.【详解】(1)由,得.当时,方程的,因此在区间上恒为负数.所以时,函数在区间上单调递减.又,所以函数在区间上恒成立;当时,方程有两个不等实根,且满足,所以函数的导函数在区间上大于零,函数在区间上单增,又,所以函数在区间上恒大于零,不满足题意;当时,在区间上,函数在区间上恒为正数,所以在区间上恒为正数,不满足题意;综上可知:若时,不等式恒成立,的最小值为.(2)由第(1)知:若时,.若,则,即成立.将换成,得成立,即,以此类推,得,上述各式相加,得,又,所以.【点睛】本题考查利用导数研究函数恒成立问题、证明数列不等式问题,考查学生的逻辑推理能力以及数学计算能力,是一道难题.