上海市实验中学2022-2023学年高三下第一次测试数学试题含解析.doc

上传人:茅**** 文档编号:87840808 上传时间:2023-04-18 格式:DOC 页数:20 大小:2.09MB
返回 下载 相关 举报
上海市实验中学2022-2023学年高三下第一次测试数学试题含解析.doc_第1页
第1页 / 共20页
上海市实验中学2022-2023学年高三下第一次测试数学试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《上海市实验中学2022-2023学年高三下第一次测试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《上海市实验中学2022-2023学年高三下第一次测试数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知数列为等比数列,若,且,则( )AB或CD2若复数z满足,则复数z在复平面内对应的点在( )A第一象限B第二象限C第三象限D第四象限3执行如图所示的程序框图若输入,则输出的的值为( )ABCD4已知,是函数图像上不同的两点,若曲线在点,处的

2、切线重合,则实数的最小值是( )ABCD15如图,圆是边长为的等边三角形的内切圆,其与边相切于点,点为圆上任意一点,则的最大值为( )ABC2D6国务院发布关于进一步调整优化结构、提高教育经费使用效益的意见中提出,要优先落实教育投入某研究机构统计了年至年国家财政性教育经费投入情况及其在中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是( )A随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B年以来,国家财政性教育经费的支出占比例持续年保持在以上C从年至年,中国的总值最少增加万亿D从年到年,国家财政性教育经费的支出增长最多的年份是年7以下两个图表是2019年初的4个月我国

3、四大城市的居民消费价格指数(上一年同月)变化图表,则以下说法错误的是( )(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)A3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均B4月份仅有三个城市居民消费价格指数超过102C四个月的数据显示北京市的居民消费价格指数增长幅度波动较小D仅有天津市从年初开始居民消费价格指数的增长呈上升趋势8过抛物线()的焦点且倾斜角为的直线交抛物线于两点.,且在第一象限,则( )ABCD9一个正四棱锥形骨架的底边边长为,高为,有一个球的表面与这个正四棱锥的每个边都相切,则

4、该球的表面积为( )ABCD10在中,“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件11过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则( )ABCD12费马素数是法国大数学家费马命名的,形如的素数(如:)为费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是()ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知两点,若直线上存在点满足,则实数满足的取值范围是_14在中,内角所对的边分别是.若,则_,面积的最大值为_.15在直三棱柱内有一个与其各面都相切的球O1,同时在三棱柱外有一

5、个外接球.若,,,则球的表面积为_.16如图,在正四棱柱中,P是侧棱上一点,且.设三棱锥的体积为,正四棱柱的体积为V,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,为等腰直角三角形,D为AC上一点,将沿BD折起,得到三棱锥,且使得在底面BCD的投影E在线段BC上,连接AE. (1)证明:;(2)若,求二面角的余弦值.18(12分)已知函数的图象向左平移后与函数图象重合.(1)求和的值;(2)若函数,求的单调递增区间及图象的对称轴方程.19(12分)已知,均为正数,且.证明:(1);(2).20(12分)如图,底面是等腰梯形,点为的中点,以为边作正

6、方形,且平面平面.(1)证明:平面平面.(2)求二面角的正弦值21(12分)选修4-5:不等式选讲已知函数f(x)=log2(|x+1|+|x2|m)(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)2的解集是R,求m的取值范围22(10分)百年大计,教育为本.某校积极响应教育部号召,不断加大拔尖人才的培养力度,为清华、北大等排名前十的名校输送更多的人才.该校成立特长班进行专项培训.据统计有如下表格.(其中表示通过自主招生获得降分资格的学生人数,表示被清华、北大等名校录取的学生人数)年份(届)2014201520162017201841495557638296108106

7、123(1)通过画散点图发现与之间具有线性相关关系,求关于的线性回归方程;(保留两位有效数字)(2)若已知该校2019年通过自主招生获得降分资格的学生人数为61人,预测2019年高考该校考人名校的人数;(3)若从2014年和2018年考人名校的学生中采用分层抽样的方式抽取出5个人回校宣传,在选取的5个人中再选取2人进行演讲,求进行演讲的两人是2018年毕业的人数的分布列和期望.参考公式:,参考数据:,参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据等比数列的性质可得,通分化简即可.【详解】由题意,数列为等比数列,则

8、,又,即,所以,.故选:A.【点睛】本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.2、A【解析】化简复数,求得,得到复数在复平面对应点的坐标,即可求解.【详解】由题意,复数z满足,可得,所以复数在复平面内对应点的坐标为位于第一象限故选:A.【点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.3、C【解析】由程序语言依次计算,直到时输出即可【详解】程序的运行过程为当n=2时,时,此时输出.故选:C【点睛】本题考查由程序框图计算输出结果,属于基础题4、B【解析】先根据导数

9、的几何意义写出 在 两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数 ,结合导数求出最小值,即可选出正确答案.【详解】解:当 时,则;当时,则.设 为函数图像上的两点,当 或时,不符合题意,故.则在 处的切线方程为;在 处的切线方程为.由两切线重合可知 ,整理得.不妨设则 ,由 可得则当时, 的最大值为.则在 上单调递减,则.故选:B.【点睛】本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出 和 的函数关系式.本题的易错点是计算.5、C【解析】建立坐标系,写出相应的点坐标,得到的表达式,进而得到最

10、大值.【详解】以D点为原点,BC所在直线为x轴,AD所在直线为y轴,建立坐标系,设内切圆的半径为1,以(0,1)为圆心,1为半径的圆;根据三角形面积公式得到,可得到内切圆的半径为 可得到点的坐标为: 故得到 故得到 , 故最大值为:2.故答案为C.【点睛】这个题目考查了向量标化的应用,以及参数方程的应用,以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.6、C【解析】观察图表,判断四个选项是否正确【详解】由表易知、项均正确,年中国为万亿元,年中国为万亿元,则从年至年,中国的总值大约

11、增加万亿,故C项错误【点睛】本题考查统计图表,正确认识图表是解题基础7、D【解析】采用逐一验证法,根据图表,可得结果.【详解】A正确,从图表二可知,3月份四个城市的居民消费价格指数相差不大B正确,从图表二可知,4月份只有北京市居民消费价格指数低于102C正确,从图表一中可知,只有北京市4个月的居民消费价格指数相差不大D错误,从图表一可知上海市也是从年初开始居民消费价格指数的增长呈上升趋势故选:D【点睛】本题考查图表的认识,审清题意,细心观察,属基础题.8、C【解析】作,;,由题意,由二倍角公式即得解.【详解】由题意,准线:,作,;,设,故,.故选:C【点睛】本题考查了抛物线的性质综合,考查了学

12、生综合分析,转化划归,数学运算的能力,属于中档题.9、B【解析】根据正四棱锥底边边长为,高为,得到底面的中心到各棱的距离都是1,从而底面的中心即为球心.【详解】如图所示:因为正四棱锥底边边长为,高为,所以 , 到 的距离为,同理到 的距离为1,所以为球的球心,所以球的半径为:1,所以球的表面积为.故选:B【点睛】本题主要考查组合体的表面积,还考查了空间想象的能力,属于中档题.10、D【解析】通过列举法可求解,如两角分别为时【详解】当时,但,故充分条件推不出;当时,但,故必要条件推不出;所以“”是“”的既不充分也不必要条件.故选:D.【点睛】本题考查命题的充分与必要条件判断,三角函数在解三角形中

13、的具体应用,属于基础题11、B【解析】设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.【详解】设点、,并设直线的方程为,将直线的方程与抛物线方程联立,消去得,由韦达定理得,可得,抛物线的准线与轴交于,的面积为,解得,则抛物线的方程为,所以,.故选:B.【点睛】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.12、B【解析】基本事件总数,能表示为两个不同费马素数的和只有,共有个,根据古典概型求出概率【详解】在不超过的正偶数中随机选取一数,基本事件总数能表示为两个不同费马素数的和的只有,共有个则它能

14、表示为两个不同费马素数的和的概率是本题正确选项:【点睛】本题考查概率的求法,考查列举法解决古典概型问题,是基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】问题转化为求直线与圆有公共点时,的取值范围,利用数形结合思想能求出结果【详解】解:直线,点,直线上存在点满足,的轨迹方程是如图,直线与圆有公共点,圆心到直线的距离:,解得实数的取值范围为故答案为:【点睛】本题主要考查直线方程、圆、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,属于中档题14、1 【解析】由正弦定理,结合,可求出;由三角形面积公式以及角A的范围,即可求出面积

15、的最大值.【详解】因为,所以由正弦定理可得,所以;所以,当,即时,三角形面积最大.故答案为(1). 1 (2). 【点睛】本题主要考查解三角形的问题,熟记正弦定理以及三角形面积公式即可求解,属于基础题型.15、【解析】先求出球O1的半径,再求出球的半径,即得球的表面积.【详解】解:,,,, 设球O1的半径为,由题得,所以棱柱的侧棱为.由题得棱柱外接球的直径为,所以外接球的半径为,所以球的表面积为.故答案为:【点睛】本题主要考查几何体的内切球和外接球问题,考查球的表面积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.16、【解析】设正四棱柱的底面边长,高,再根据柱体、锥体的体积公式计算

16、可得.【详解】解:设正四棱柱的底面边长,高,则,即故答案为:【点睛】本题考查柱体、锥体的体积计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】(1)由折叠过程知与平面垂直,得,再取中点,可证与平面垂直,得,从而可得线面垂直,再得线线垂直;(2)由已知得为中点,以为原点,所在直线为轴,在平面内过作的垂线为轴建立空间直角坐标系,由已知求出线段长,得出各点坐标,用平面的法向量计算二面角的余弦【详解】(1)易知与平面垂直,连接,取中点,连接,由得,平面,平面,又,平面,;(2)由,知是中点,令,则,由,解得,故以为原点,所在直线为轴,在平

17、面内过作的垂线为轴建立空间直角坐标系,如图,则,设平面的法向量为,则,取,则又易知平面的一个法向量为,二面角的余弦值为【点睛】本题考查证明线线垂直,考查用空间向量法求二面角证线线垂直,一般先证线面垂直,而证线面垂直又要证线线垂直,注意线线垂直、线面垂直及面面垂直的转化求空间角,常用方法就是建立空间直角坐标系,用空间向量法求空间角18、(1),;(2),.【解析】(1)直接利用同角三角函数关系式的变换的应用求出结果(2)首先把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质的应用求出结果【详解】(1)由题意得,(2)由,解得,所以对称轴为,.由,解得,所以单调递增区间为.,【点睛】本题考

18、查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力,属于基础题型19、(1)见解析(2)见解析【解析】(1)由进行变换,得到,两边开方并化简,证得不等式成立.(2)将化为,然后利用基本不等式,证得不等式成立.【详解】(1),两边加上得,即,当且仅当时取等号,.(2).当且仅当时取等号.【点睛】本小题主要考查利用基本不等式证明不等式成立,考查化归与转化的数学思想方法,属于中档题.20、(1)见解析;(2)【解析】(1)先证明四边形是菱形,进而可知,然后可得到平面,即可证明平面平面;(2)记AC,BE的交点为O,再取FG的中点P.以O为坐标原点,以射线

19、OB,OC,OP分别为x轴、y轴、z轴的正半轴建立如图所示的空间直角坐标系,分别求出平面ABF和DBF的法向量,然后由,可求出二面角的余弦值,进而可求出二面角的正弦值.【详解】(1)证明:因为点为的中点,所以,因为,所以,所以四边形是平行四边形,因为,所以平行四边形是菱形,所以,因为平面平面,且平面平面,所以平面.因为平面,所以平面平面.(2)记AC,BE的交点为O,再取FG的中点P.由题意可知AC,BE,OP两两垂直,故以O为坐标原点,以射线OB,OC,OP分别为x轴、y轴、z轴的正半轴建立如图所示的空间直角坐标系.因为底面ABCD是等腰梯形,所以四边形ABCE是菱形,且,所以,则,设平面A

20、BF的法向量为,则,不妨取,则,设平面DBF的法向量为,则,不妨取,则,故.记二面角的大小为,故.【点睛】本题考查了面面垂直的证明,考查了二面角的求法,利用空间向量求平面的法向量是解决空间角问题的常见方法,属于中档题.21、(1),(2) 【解析】试题分析:用零点分区间讨论法解含绝对值的不等式,根据绝对值三角不等式得出,不等式|x+1|+|x2|m+4解集是R,只需m+43,得出的范围.试题解析:(1)由题设知:|x+1|+|x2|7,不等式的解集是以下不等式组解集的并集:,或,或,解得函数f(x)的定义域为(,3)(4,+)(2)不等式f(x)2即|x+1|+|x2|m+4,xR时,恒有|x

21、+1|+|x2|(x+1)(x2)|=3,不等式|x+1|+|x2|m+4解集是R,m+43,m的取值范围是(,122、(1);(2)117人;(3)分布列见解析,【解析】(1)首先求得和,再代入公式即可列方程,由此求得关于的线性回归方程;(2)根据回归直线方程计算公式,计算可得人数;(3)和被选中的人数分别为2和3,利用超几何分布分布列的计算公式,计算出的分布列,并求得数学期望.【详解】(1)由题,所以线性回归方程为(若第一问求出 .)(2)当时,所以预测2019年高考该校考入名校的人数约为117人(3)由题知和被选中的人数分别为2和3,进行演讲的两人是2018年毕业的人数的所有可能取值为0,1,2,的分布列为012【点睛】本小题主要考查平均数有关计算,考查回归直线方程的计算,考查期望的计算,考查超几何分布和数据处理能力,属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁