陇南市重点中学2023届高三下第一次测试数学试题含解析.doc

上传人:茅**** 文档编号:88314256 上传时间:2023-04-25 格式:DOC 页数:19 大小:1.79MB
返回 下载 相关 举报
陇南市重点中学2023届高三下第一次测试数学试题含解析.doc_第1页
第1页 / 共19页
陇南市重点中学2023届高三下第一次测试数学试题含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《陇南市重点中学2023届高三下第一次测试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《陇南市重点中学2023届高三下第一次测试数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若函数的图象恒在轴的上方,则实数的取值范围为( )ABCD2在中,内角A,B,C所对的边分别为a,b,c,D是A

2、B的中点,若,且,则面积的最大值是( )ABCD3抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( )ABCD4羽毛球混合双打比赛每队由一男一女两名运动员组成. 某班级从名男生,和名女生,中各随机选出两名,把选出的人随机分成两队进行羽毛球混合双打比赛,则和两人组成一队参加比赛的概率为( )ABCD5中国古代数学名著九章算术中记载了公元前344年商鞅督造的一种标准量器商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为( ) A3B3.4C3.8D46已知函数在区间有三个零点,且,若,则的最小正周期为( )ABCD7若P

3、是的充分不必要条件,则p是q的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件8函数的大致图象是ABCD9已知命题:是“直线和直线互相垂直”的充要条件;命题:函数的最小值为4. 给出下列命题:;,其中真命题的个数为( )A1B2C3D410已知双曲线:(,)的焦距为.点为双曲线的右顶点,若点到双曲线的渐近线的距离为,则双曲线的离心率是( )ABC2D311已知抛物线,F为抛物线的焦点且MN为过焦点的弦,若,则的面积为( )ABCD12若复数,则( )ABCD20二、填空题:本题共4小题,每小题5分,共20分。13曲线f(x)=(x2 +x)lnx在点(1,f(1)处的切线

4、方程为_.14若的展开式中各项系数之和为32,则展开式中x的系数为_15已知非零向量的夹角为,且,则_.16我国古代数学著作九章算术中记载“今有人共买物,人出八,盈三;人出七,不足四问人数、物价各几何?”设人数、物价分别为、,满足,则_,_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)为了拓展城市的旅游业,实现不同市区间的物资交流,政府决定在市与市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记为,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为.(1)现征求两市居民的种植意见,看看哪一种植物更受欢迎,得到的数据如下所示:A市居民B市居民

5、喜欢杨树300200喜欢木棉树250250是否有的把握认为喜欢树木的种类与居民所在的城市具有相关性;(2)若从所有的路口中随机抽取4个路口,恰有个路口种植杨树,求的分布列以及数学期望;(3)在所有的路口种植完成后,选取3个种植同一种树的路口,记总的选取方法数为,求证:.附:0.1000.0500.0100.0012.7063.8416.63510.82818(12分)已知函数.() 求函数的单调区间;() 当时,求函数在上最小值.19(12分)在中,角A、B、C的对边分别为a、b、c,且. (1)求角A的大小;(2)若,的平分线与交于点D,与的外接圆交于点E(异于点A),求的值.20(12分)

6、随着科技的发展,网络已逐渐融入了人们的生活网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)经常网购偶尔或不用网购合计男性50100女性70100合计(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?(2)现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机

7、变量的数学期望和方差参考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821(12分)已知抛物线的准线过椭圆C:(ab0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4.(1)求椭圆C的标准方程;(2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程.22(10分)已知ABC的两个顶点A,B的坐标分别为(,0),(,0),圆E是ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=2,动点C的轨迹为曲线G.(1)求

8、曲线G的方程;(2)设直线l与曲线G交于M,N两点,点D在曲线G上,是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】函数的图象恒在轴的上方,在上恒成立.即,即函数的图象在直线上方,先求出两者相切时的值,然后根据变化时,函数的变化趋势,从而得的范围【详解】由题在上恒成立.即,的图象永远在的上方,设与的切点,则,解得,易知越小,图象越靠上,所以.故选:B【点睛】本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转

9、化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围2、A【解析】根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.【详解】中,由正弦定理可得,整理得,由余弦定理,得.D是AB的中点,且,即,即,当且仅当时,等号成立.的面积,所以面积的最大值为.故选:.【点睛】本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题.3、A【解析】求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值【详解】抛物线的准线为, 双曲线的两条渐

10、近线为, 可得两交点为, 即有三角形的面积为,解得,故选A【点睛】本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题4、B【解析】根据组合知识,计算出选出的人分成两队混合双打的总数为,然后计算和分在一组的数目为,最后简单计算,可得结果.【详解】由题可知:分别从3名男生、3名女生中选2人 :将选中2名女生平均分为两组:将选中2名男生平均分为两组:则选出的人分成两队混合双打的总数为:和分在一组的数目为所以所求的概率为故选:B【点睛】本题考查排列组合的综合应用,对平均分组的问题要掌握公式,比如:平均分成组,则要除以,即,审清题意,细心计算,考验分析能力

11、,属中档题.5、D【解析】根据三视图即可求得几何体表面积,即可解得未知数.【详解】由图可知,该几何体是由一个长宽高分别为和一个底面半径为,高为的圆柱组合而成.该几何体的表面积为,解得,故选:D.【点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.6、C【解析】根据题意,知当时,由对称轴的性质可知和,即可求出,即可求出的最小正周期.【详解】解:由于在区间有三个零点,当时,由对称轴可知,满足,即.同理,满足,即,所以最小正周期为:.故选:C.【点睛】本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计算能力.7、B【解析】试题分析:通过逆否命题的同真同假,结合

12、充要条件的判断方法判定即可由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B考点:逻辑命题8、A【解析】利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,可排除D选项;当时,当时,即,可排除C选项,故选:A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题9、A【解析】先由两直线垂直的条件判断出命题p的真假,由基本不等式判断命题q的真假,从而得出p,q的非命题的真假,继而判断复合命题的真假,可得出选项.【详解】已知对于命题,由得,所以命题为假命题;关于命题,函数,当

13、时,当即时,取等号,当时,函数没有最小值,所以命题为假命题.所以和是真命题,所以为假命题,为假命题,为假命题,为真命题,所以真命题的个数为1个.故选:A.【点睛】本题考查直线的垂直的判定和基本不等式的应用,以及复合命题的真假的判断,注意运用基本不等式时,满足所需的条件,属于基础题.10、A【解析】由点到直线距离公式建立的等式,变形后可求得离心率【详解】由题意,一条渐近线方程为,即,即,故选:A【点睛】本题考查求双曲线的离心率,掌握渐近线方程与点到直线距离公式是解题基础11、A【解析】根据可知,再利用抛物线的焦半径公式以及三角形面积公式求解即可.【详解】由题意可知抛物线方程为,设点点,则由抛物线

14、定义知,则.由得,则.又MN为过焦点的弦,所以,则,所以.故选:A【点睛】本题考查抛物线的方程应用,同时也考查了焦半径公式等.属于中档题.12、B【解析】化简得到,再计算模长得到答案.【详解】,故.故选:.【点睛】本题考查了复数的运算,复数的模,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求函数的导数,利用导数的几何意义即可求出切线方程.【详解】解:,则,又,即切点坐标为(1,0),则函数在点(1,f(1)处的切线方程为,即,故答案为:.【点睛】本题主要考查导数的几何意义,根据导数和切线斜率之间的关系是解决本题的关键.14、2025【解析】利用赋值法,

15、结合展开式中各项系数之和列方程,由此求得的值.再利用二项式展开式的通项公式,求得展开式中的系数.【详解】依题意,令,解得,所以,则二项式的展开式的通项为:令,得,所以的系数为.故答案为:2025【点睛】本小题主要考查二项式展开式各项系数之和,考查二项式展开式指定项系数的求法,属于基础题.15、1【解析】由已知条件得出,可得,解之可得答案.【详解】向量的夹角为,且,可得:,可得,解得,故答案为:1.【点睛】本题考查根据向量的数量积运算求向量的模,关键在于将所求的向量的模平方,利用向量的数量积化简求解即可,属于基础题.16、 【解析】利用已知条件,通过求解方程组即可得到结果【详解】设人数、物价分别

16、为、,满足,解得,.故答案为:;.【点睛】本题考查函数与方程的应用,方程组的求解,考查计算能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)没有(2)分布列见解析,(3)证明见解析【解析】(1)根据公式计算卡方值,再对应卡值表判断.(2)根据题意,随机变量的可能取值为0,1,2,3,4,分别求得概率,写出分布列,根据期望公式求值.(3)因为至少8个的偶数个十字路口,所以,即.要证,即证,根据组合数公式,即证;易知有.成立.设个路口中有个路口种植杨树,下面分类讨论当时,由论证.当时,由论证.当时,设,再论证当 时,取得最小值即可.【详解】(1)本次实验中,

17、故没有99.9%的把握认为喜欢树木的种类与居民所在的城市具有相关性.(2)依题意,的可能取值为0,1,2,3,4,故,01234故.(3),.要证,即证;首先证明:对任意,有.证明:因为,所以.设个路口中有个路口种植杨树,当时,因为,所以,于是.当时,同上可得当时,设,当时,显然,当即时,当即时,即;,因此,即.综上,即.【点睛】本题考查独立性检验、离散型随机变量的分布列以及期望、排列组合,还考查运算求解能力以及必然与或然思想,属于难题.18、 ()见解析;()当时,函数的最小值是;当时,函数的最小值是【解析】(1)求出导函数,并且解出它的零点x=,再分区间讨论导数的正负,即可得到函数f(x)

18、的单调区间;(2)分三种情况加以讨论,结合函数的单调性与函数值的大小比较,即可得到当0aln 2时,函数f(x)的最小值是-a;当aln2时,函数f(x)的最小值是ln2-2a【详解】函数的定义域为因为,令,可得;当时,;当时,综上所述:可知函数的单调递增区间为,单调递减区间为当,即时,函数在区间上是减函数,的最小值是当,即时,函数在区间上是增函数,的最小值是当,即时,函数在上是增函数,在上是减函数又,当时,的最小值是;当时,的最小值为综上所述,结论为当时,函数的最小值是;当时,函数的最小值是.【点睛】求函数极值与最值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义

19、域内的所有根;(4) 列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小19、(1);(2)【解析】(1)由,利用正弦定理转化整理为,再利用余弦定理求解.(2)根据,利用两角和的余弦得到,利用数形结合,设,在中,由正弦定理求得,在中,求得再求解.【详解】(1)因为, 所以, 即,即,所以.(2),. 所以,从而.所以,.不妨设,O为外接圆圆心则AO=1,.在中,由正弦定理知,有. 即; 在中,由,从而.所以.【

20、点睛】本题主要考查平面向量的模的几何意义,还考查了数形结合的方法,属于中档题.20、()详见解析;();数学期望为6,方差为2.4.【解析】(1)完成列联表,由列联表,得,由此能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关(2) 由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,由此能选取的3人中至少有2人经常网购的概率 由列联表可知,抽到经常网购的市民的频率为:,由题意,由此能求出随机变量的数学期望和方差【详解】解:(1)完成列联表(单位:人):经常网购偶尔或不用网购合计男性5050100女性7030100合计12080200由列联表,得:,能在犯错误的概

21、率不超过0.01的前提下认为我市市民网购与性别有关(2)由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,选取的3人中至少有2人经常网购的概率为: 由列联表可知,抽到经常网购的市民的频率为:,将频率视为概率,从我市市民中任意抽取一人,恰好抽到经常网购市民的概率为0.6,由题意,随机变量的数学期望,方差D(X)=【点睛】本题考查独立检验的应用,考查概率、离散型随机变量的分布列、数学期望、方差的求法,考查古典概型、二项分布等基础知识,考查运算求解能力,是中档题21、(1);(2)或.【解析】(1)由抛物线的准线方程求出的值,确定左焦点坐标,再由点F到直线l:的距离为4,求出即可;

22、(2)设直线方程,与椭圆方程联立,运用根与系数关系和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.【详解】(1)抛物线的准线方程为,直线,点F到直线l的距离为,所以椭圆的标准方程为;(2)依题意斜率不为0,又过点,设方程为,联立,消去得,设,线段AB的中垂线交直线l于点Q,所以横坐标为3,平方整理得,解得或(舍去),所求的直线方程为或.【点睛】本题考查椭圆的方程以及直线与椭圆的位置关系,要熟练应用根与系数关系、相交弦长公式,合理运用两点间的距离公式,考查计算求解能力,属于中档题.22、(1).(2)四边形OMDN的面积是定值,其定值为.【解析】(1)根据三角形内切圆的性

23、质证得,由此判断出点的轨迹为椭圆,并由此求得曲线的方程.(2)将直线的斜率分成不存在或存在两种情况,求出平行四边形的面积,两种情况下四边形的面积都为,由此证得四边形的面积为定值.【详解】(1)因为圆E为ABC的内切圆,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4|AB|所以点C的轨迹为以点A和点B为焦点的椭圆(点不在轴上),所以c,a=2,b,所以曲线G的方程为,(2)因为,故四边形为平行四边形.当直线l的斜率不存在时,则四边形为为菱形,故直线MN的方程为x=1或x=1,此时可求得四边形OMDN的面积为.当直线l的斜率存在时,设直线l方程是y=kx+m,代入到,得(1+2k2)x2+4kmx+2m24=0,x1+x2,x1x2,=8(4k2+2m2)0,y1+y2=k(x1+x2)+2m,|MN|点O到直线MN的距离d,由,得xD,yD,点D在曲线C上,所以将D点坐标代入椭圆方程得1+2k2=2m2,由题意四边形OMDN为平行四边形,OMDN的面积为S,由1+2k2=2m2得S,故四边形OMDN的面积是定值,其定值为.【点睛】本小题主要考查用定义法求轨迹方程,考查椭圆中四边形面积的计算,考查椭圆中的定值问题,考查运算求解能力,属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁