《云南省昆明三中滇池中学2022-2023学年高三第一次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省昆明三中滇池中学2022-2023学年高三第一次模拟考试数学试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知数列为等差数列,为其前项和,则( )A7B14C28D842已知复数在复平面内对应的点的坐标为,则下列结论正确的是( )AB复数的共轭复数是CD3设全集,集合,则( )ABCD4如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积
2、为( )A BCD5已知集合,则为( )ABCD6已知且,函数,若,则( )A2BCD7已知函数,关于的方程R)有四个相异的实数根,则的取值范围是()ABCD8一袋中装有个红球和个黑球(除颜色外无区别),任取球,记其中黑球数为,则为( )ABCD9已知,若,则( )ABCD10当时,函数的图象大致是( )ABCD11要得到函数的导函数的图像,只需将的图像( )A向右平移个单位长度,再把各点的纵坐标伸长到原来的3倍B向右平移个单位长度,再把各点的纵坐标缩短到原来的倍C向左平移个单位长度,再把各点的纵坐标缩短到原来的倍D向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍12已知双曲线的一个焦点为
3、,点是的一条渐近线上关于原点对称的两点,以为直径的圆过且交的左支于两点,若,的面积为8,则的渐近线方程为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13现有一块边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,该方盒容积的最大值是_14已知等比数列的各项都是正数,且成等差数列,则=_15已知实数满足,则的最小值是_.16已知(2x-1)7=ao+a1x+ a2x2+a7x7,则a2=_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知点,若点满足.()求点的轨迹方程; ()过点的直线与()中曲线相交于两点,为坐
4、标原点, 求面积的最大值及此时直线的方程.18(12分)已知直线的参数方程为(,为参数),曲线的极坐标方程为.(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;(2)若直线经过点,求直线被曲线截得的线段的长.19(12分) 选修4-5:不等式选讲设函数.(1)求不等式的解集;(2)已知关于的不等式在上有解,求实数的取值范围.20(12分)如图,三棱锥中,.(1)求证:;(2)求直线与平面所成角的正弦值.21(12分)已知凸边形的面积为1,边长,其内部一点到边的距离分别为.求证:.22(10分)已知矩阵的一个特征值为4,求矩阵A的逆矩阵.参考答案一、选择题:本题共12小题,每小题5分,
5、共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用等差数列的通项公式,可求解得到,利用求和公式和等差中项的性质,即得解【详解】,解得故选:D【点睛】本题考查了等差数列的通项公式、求和公式和等差中项,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.2、D【解析】首先求得,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项.【详解】由题意知复数,则,所以A选项不正确;复数的共轭复数是,所以B选项不正确;,所以C选项不正确;,所以D选项正确.故选:D【点睛】本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等
6、基础知识;考查运算求解能力,推理论证能力,数形结合思想.3、A【解析】先求得全集包含的元素,由此求得集合的补集.【详解】由解得,故,所以,故选A.【点睛】本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题.4、C【解析】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.5、C【解析】分别求解出集合的具体范围,由集合的交集运算即可求得答案.【详解】因为集合,所以故选
7、:C【点睛】本题考查对数函数的定义域求法、一元二次不等式的解法及集合的交集运算,考查基本运算能力.6、C【解析】根据分段函数的解析式,知当时,且,由于,则,即可求出.【详解】由题意知:当时,且由于,则可知:,则,则,则.即.故选:C.【点睛】本题考查分段函数的应用,由分段函数解析式求自变量.7、A【解析】=,当时时,单调递减,时,单调递增,且当,当,当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,即.8、A【解析】由题意可知,随机变量的可能取值有、,计算出随机变量在不同取值下的概率,进而可求得随机变量的数学期望值.【详解】由题意可知,随机变量的可能取值有、,则,.因此,随机变
8、量的数学期望为.故选:A.【点睛】本题考查随机变量数学期望的计算,考查计算能力,属于基础题.9、B【解析】由平行求出参数,再由数量积的坐标运算计算【详解】由,得,则,所以故选:B【点睛】本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键10、B【解析】由,解得,即或,函数有两个零点,不正确,设,则,由,解得或,由,解得:,即是函数的一个极大值点,不成立,排除,故选B.【方法点晴】本题通过对多个图象的选择考察函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,
9、但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.11、D【解析】先求得,再根据三角函数图像变换的知识,选出正确选项.【详解】依题意,所以由向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍得到的图像.故选:D【点睛】本小题主要考查复合函数导数的计算,考查诱导公式,考查三角函数图像变换,属于基础题.12、B【解析】由双曲线的对称性可得即,又,从而可得的渐近线方程.【详解】设双曲线的另一个焦点为,由双曲线的对称性,四边形是矩形,所以,即,由,得:,所以,所以,所以,所以,的渐近线方程为.
10、故选B【点睛】本题考查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意容积,求导研究单调性,分析即得解.【详解】由题意:容积,则,由得或(舍去),令则为V在定义域内唯一的极大值点也是最大值点,此时.故答案为:【点睛】本题考查了导数在实际问题中的应用,考查了学生数学建模,转化划归,数学运算的能力,属于中档题.14、【解析】根据等差中项性质,结合等比数列通项公式即可求得公比;代入表达式,结合对数式的化简即可求解.【详解】等比数列的各项都是正数,且成等差数列,则,由等比数列通项公式可知,所以,解
11、得或(舍),所以由对数式运算性质可得,故答案为:.【点睛】本题考查了等差数列通项公式的简单应用,等比数列通项公式的用法,对数式的化简运算,属于中档题.15、【解析】先画出不等式组对应的可行域,再利用数形结合分析解答得解.【详解】画出不等式组表示的可行域如图阴影区域所示.由题得y=-3x+z,它表示斜率为-3,纵截距为z的直线系,平移直线,易知当直线经过点时,直线的纵截距最小,目标函数取得最小值,且.故答案为:-8【点睛】本题主要考查线性规划问题,意在考查学生对这些知识的理解掌握水平和数形结合分析能力.16、【解析】根据二项展开式的通项公式即可得结果.【详解】解:(2x-1)7的展开式通式为:当
12、时,则.故答案为:【点睛】本题考查求二项展开式指定项的系数,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、();()面积的最大值为,此时直线的方程为.【解析】(1)根据椭圆的定义求解轨迹方程;(2)设出直线方程后,采用(表示原点到直线的距离)表示面积,最后利用基本不等式求解最值.【详解】解:()由定义法可得,点的轨迹为椭圆且,. 因此椭圆的方程为. ()设直线的方程为与椭圆交于点, ,联立直线与椭圆的方程消去可得,即,. 面积可表示为令,则,上式可化为,当且仅当,即时等号成立,因此面积的最大值为,此时直线的方程为.【点睛】常见的利用定义法求解曲线的轨迹方程问题:
13、(1)已知点,若点满足且,则的轨迹是椭圆;(2)已知点,若点满足且,则的轨迹是双曲线.18、 (1) 曲线表示的是焦点为,准线为的抛物线;(2)8.【解析】试题分析:(1)将曲线的极坐标方程为两边同时乘以,利用极坐标与直角坐标之间的关系即可得出其直角坐标方程;(2)由直线经过点,可得的值,再将直线的参数方程代入曲线的标准方程,由直线参数方程的几何意义可得直线被曲线截得的线段的长.试题解析:(1)由可得,即, 曲线表示的是焦点为,准线为的抛物线. (2)将代入,得, , , ,直线的参数方程为 (为参数).将直线的参数方程代入得,由直线参数方程的几何意义可知,. 19、 (1) (2) 【解析】
14、(1)零点分段去绝对值解不等式即可(2)由题在上有解,去绝对值分离变量a即可.【详解】(1)不等式,即等价于 或或 解得 ,所以原不等式的解集为; (2)当时,不等式,即,所以在上有解 即在上有解, 所以,【点睛】本题考查绝对值不等式解法,不等式有解求参数,熟记零点分段,熟练处理不等式有解问题是关键,是中档题.20、(1)证明见详解;(2)【解析】(1)取中点,根据,利用线面垂直的判定定理,可得平面,最后可得结果.(2)利用建系,假设长度, 可得,以及平面的一个法向量,然后利用向量的夹角公式,可得结果.【详解】(1)取中点,连接,如图由,所以由,平面所以平面,又平面所以(2)假设,由,.所以则
15、,所以又,平面所以平面,所以,又,故建立空间直角坐标系,如图设平面的一个法向量为则令,所以则直线与平面所成角的正弦值为【点睛】本题考查线面垂直、线线垂直的应用,还考查线面角,学会使用建系的方法来解决立体几何问题,将几何问题代数化,化繁为简,属中档题.21、证明见解析【解析】由已知,易得,所以利用柯西不等式和基本不等式即可证明.【详解】因为凸边形的面积为1,所以,所以(由柯西不等式得)(由均值不等式得)【点睛】本题考查利用柯西不等式、基本不等式证明不等式的问题,考查学生对不等式灵活运用的能力,是一道容易题.22、.【解析】根据特征多项式可得,可得,进而可得矩阵A的逆矩阵.【详解】因为矩阵的特征多项式,所以,所以.因为,且,所以.【点睛】本题考查矩阵的特征多项式以及逆矩阵的求解,是基础题.