《上海市金山区2022-2023学年高三第四次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《上海市金山区2022-2023学年高三第四次模拟考试数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1一个正四棱锥形骨架的底边边长为,高为,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为( )ABCD2i是虚数单位,若,则乘积的值是( )A15B3C3D153下图为一
2、个正四面体的侧面展开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为( )ABCD4如图,在中, ,是上的一点,若,则实数的值为( )ABCD5设复数,则=( )A1BCD6某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为( )A100B1000C90D907已知,满足约束条件,则的最大值为ABCD8如图,在中,点是的中点,过点的直线分别交直线,于不同的两点,若,则( )A1BC2D39 “”是“直线与互相平行”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件10已知复
3、数,若,则的值为( )A1BCD11已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为( )ABCD12函数的大致图象为ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数为偶函数,则_.14设实数满足约束条件,则的最大值为_.15如图,在棱长为2的正方体中,点、分别是棱,的中点,是侧面正方形内一点(含边界),若平面,则线段长度的取值范围是_.16在平面直角坐标系xOy中,若圆C1:x2(y1)2r2(r0)上存在点P,且点P关于直线xy0的对称点Q在圆C2:(x2)2(y1)21上,则r的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过
4、程或演算步骤。17(12分)设函数.(1)求的值;(2)若,求函数的单调递减区间.18(12分)已知函数u(x)xlnx,v(x)x1,mR(1)令m2,求函数h(x)的单调区间;(2)令f(x)u(x)v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1x2的最大值19(12分)已知,且的解集为.(1)求实数,的值;(2)若的图像与直线及围成的四边形的面积不小于14,求实数取值范围.20(12分)在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划
5、从两个学习组中随机各选2名教师参加学校的挑战答题比赛.(1)求选出的4名选手中恰好有一名女教师的选派方法数;(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.21(12分)已知等比数列,其公比,且满足,和的等差中项是1()求数列的通项公式;()若,是数列的前项和,求使成立的正整数的值22(10分)2018年9月,台风“山竹”在我国多个省市登陆,造成直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的数据分成五组:,(单位:元),得到如图所示的频率分布直方图.(1)试根据频率分布直方图估计该地区每个农户的平均损失(同一组中的数
6、据用该组区间的中点值代表);(2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户并且损失超过4000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8000元的农户数为,求的分布列和数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据正四棱锥底边边长为,高为,得到底面的中心到各棱的距离都是1,从而底面的中心即为球心.【详解】如图所示:因为正四棱锥底边边长为,高为,所以 , 到 的距离为,同理到 的距离为1,所以为球的球心,所以球的半径为:1,所以球的表面积为.故选:B【点睛
7、】本题主要考查组合体的表面积,还考查了空间想象的能力,属于中档题.2、B【解析】,选B3、C【解析】将正四面体的展开图还原为空间几何体,三点重合,记作,取中点,连接,即为与直线所成的角,表示出三角形的三条边长,用余弦定理即可求得.【详解】将展开的正四面体折叠,可得原正四面体如下图所示,其中三点重合,记作:则为中点,取中点,连接,设正四面体的棱长均为,由中位线定理可得且,所以即为与直线所成的角, ,由余弦定理可得,所以直线与直线所成角的余弦值为,故选:C.【点睛】本题考查了空间几何体中异面直线的夹角,将展开图折叠成空间几何体,余弦定理解三角形的应用,属于中档题.4、B【解析】变形为,由得,转化在
8、中,利用三点共线可得.【详解】解:依题: ,又三点共线,解得故选:【点睛】本题考查平面向量基本定理及用向量共线定理求参数. 思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值. (2)直线的向量式参数方程: 三点共线 (为平面内任一点,)5、A【解析】根据复数的除法运算,代入化简即可求解.【详解】复数,则故选:A.【点睛】本题考查了复数的除法运算与化简求值,属于基础题.6、A【解析】利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解【详解】由题意,支出在(单位
9、:元)的同学有34人由频率分布直方图可知,支出在的同学的频率为故选:A【点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.7、D【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论【详解】作出不等式组表示的平面区域如下图中阴影部分所示,等价于,作直线,向上平移,易知当直线经过点时最大,所以,故选D【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法8、C【解析】连接AO,因为O为BC中点,可由平行四边形法则得,再将其用,表示.由M、O、N三点共线可知,其表达式中的
10、系数和,即可求出的值.【详解】连接AO,由O为BC中点可得,、三点共线,.故选:C. 【点睛】本题考查了向量的线性运算,由三点共线求参数的问题,熟记向量的共线定理是关键.属于基础题.9、A【解析】利用两条直线互相平行的条件进行判定【详解】当时,直线方程为与,可得两直线平行;若直线与互相平行,则,解得,则“”是“直线与互相平行”的充分不必要条件,故选【点睛】本题主要考查了两直线平行的条件和性质,充分条件,必要条件的定义和判断方法,属于基础题10、D【解析】由复数模的定义可得:,求解关于实数的方程可得:.本题选择D选项.11、D【解析】先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,
11、从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【详解】因为函数的最小正周期是,所以,即,所以,的图象向左平移个单位长度后得到的函数解析式为,由于其图象关于轴对称,所以,又,所以,所以,所以, 因为的递增区间是:,由,得:,所以函数的单调递增区间为().故选:D.【点睛】本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.12、A【解析】因为,所以函数是偶函数,排除B、D,又,排除C,故选A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据偶函数的定义列方程,化简求得的值.【详解】由于为偶
12、函数,所以,即,即,即,即,即,即,即,所以.故答案为:【点睛】本小题主要考查根据函数的奇偶性求参数,考查运算求解能力,属于中档题.14、【解析】试题分析:作出不等式组所表示的平面区域如图,当直线过点时,最大,且考点:线性规划.15、【解析】取中点,连结,推导出平面平面,从而点在线段上运动,作于,由,能求出线段长度的取值范围【详解】取中点,连结,在棱长为2的正方体中,点、分别是棱、的中点,平面平面,是侧面正方形内一点(含边界),平面,点在线段上运动,在等腰中,作于,由等面积法解得:,线段长度的取值范围是,故答案为:,【点睛】本题考查线段长的取值范围的求法,考查空间中线线、线面、面面间的位置关系
13、等基础知识,考查运算求解能力,是中档题16、【解析】设圆C1上存在点P(x0,y0),则Q(y0,x0),分别满足两个圆的方程,列出方程组,转化成两个新圆有公共点求参数范围.【详解】设圆C1上存在点P(x0,y0)满足题意,点P关于直线xy0的对称点Q(y0,x0),则,故只需圆x2(y1)2r2与圆(x1)2(y2)21有交点即可,所以|r1|r1,解得.故答案为:【点睛】此题考查圆与圆的位置关系,其中涉及点关于直线对称点问题,两个圆有公共点的判定方式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)的递减区间为和【解析】(1)化简函数,代入,计算即可;(2)
14、先利用正弦函数的图象与性质求出函数的单调递减区间,再结合即可求出.【详解】(1),从而.(2)令.解得.即函数的所有减区间为,考虑到,取,可得,故的递减区间为和.【点睛】本题主要考查了三角函数的恒等变形,正弦函数的图象与性质,属于中档题.18、(1)单调递增区间是(0,e),单调递减区间是(e,+)(2)【解析】(1)化简函数h(x),求导,根据导数和函数的单调性的关系即可求出(2)函数f(x)恰有两个极值点x1,x2,则f(x)lnxmx0有两个正根,由此得到m(x2x1)lnx2lnx1,m(x2+x1)lnx2+lnx1,消参数m化简整理可得ln(x1x2)ln,设t,构造函数g(t)(
15、)lnt,利用导数判断函数的单调性,求出函数的最大值即可求出x1x2的最大值【详解】(1)令m2,函数h(x),h(x),令h(x)0,解得xe,当x(0,e)时,h(x)0,当x(e,+)时,h(x)0,函数h(x)单调递增区间是(0,e),单调递减区间是(e,+)(2)f(x)u(x)v(x)xlnxx+1,f(x)1+lnxmx1lnxmx,函数f(x)恰有两个极值点x1,x2,f(x)lnxmx0有两个不等正根,lnx1mx10,lnx2mx20,两式相减可得lnx2lnx1m(x2x1),两式相加可得m(x2+x1)lnx2+lnx1,ln(x1x2)ln,设t,1e,1te,设g(
16、t)()lnt,g(t),令(t)t212tlnt,(t)2t2(1+lnt)2(t1lnt),再令p(t)t1lnt,p(t)10恒成立,p(t)在(1,e单调递增,(t)p(t)p(1)11ln10,(t)在(1,e单调递增,g(t)(t)(1)112ln10,g(t)在(1,e单调递增,g(t)maxg(e),ln(x1x2),x1x2故x1x2的最大值为【点睛】本题考查了利用导数求函数的最值和最值,考查了函数与方程的思想,转化与化归思想,属于难题19、(1),;(2)【解析】(1)解绝对值不等式得,根据不等式的解集为列出方程组,解出即可;(2)求出的图像与直线及交点的坐标,通过分割法将
17、四边形的面积分为两个三角形,列出不等式,解不等式即可.【详解】(1)由得:,即,解得,.(2)的图像与直线及围成的四边形,.过点向引垂线,垂足为,则.化简得:,(舍)或.故的取值范围为.【点睛】本题主要考查了绝对值不等式的求法,以及绝对值不等式在几何中的应用,属于中档题.20、(1)28种;(2)分布见解析,.【解析】(1)分这名女教师分别来自党员学习组与非党员学习组,可得恰好有一名女教师的选派方法数;(2)X的可能取值为,再求出X的每个取值的概率,可得X的概率分布和数学期望.【详解】解:(1)选出的4名选手中恰好有一名女生的选派方法数为种.(2)X的可能取值为0,1,2,3. ,.故X的概率
18、分布为:X0123P所以.【点睛】本题主要考查组合数与组合公式及离散型随机变量的期望和方差,相对不难,注意运算的准确性.21、 () .() .【解析】()由等差数列中项性质和等比数列的通项公式,解方程可得首项和公比,可得所求通项公式;(),由数列的错位相减法求和可得,解方程可得所求值【详解】()等比数列,其公比,且满足,和的等差中项是即有,解得: ()由()知:则相减可得:化简可得:,即为解得:【点睛】本题考查等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,以及方程思想和运算能力,属于中档题22、(1)3360元;(2)见解析【解析】(1)根据频率分布直方图计算每个农户的平均损失;(2)根据频率分布直方图计算随机变量X的可能取值,再求X的分布列和数学期望值【详解】(1)记每个农户的平均损失为元,则 ;(2)由频率分布直方图,可得损失超过1000元的农户共有(0.00009+0.00003+0.00003)20005015(户),损失超过8000元的农户共有0.000032000503(户),随机抽取2户,则X的可能取值为0,1,2;计算P(X0),P(X1),P(X2),所以X的分布列为; X012P数学期望为E(X)0+1+2【点睛】本题考查了频率分布直方图与离散型随机变量的分布列与数学期望计算问题,属于中档题