《陕西省汉中中学2022-2023学年高三第四次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省汉中中学2022-2023学年高三第四次模拟考试数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知各项都为正的等差数列中,若,成等比数列,则( )ABCD2已知(i为虚数单位,),则ab等于( )A2B-2CD3阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:红楼梦、三国
2、演义、水浒传及西游记,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有( )A120种B240种C480种D600种4已知,则( )ABC3D45若x,y满足约束条件且的最大值为,则a的取值范围是( )ABCD6已知函数,则( )A2B3C4D57已知函数,且,则( )A3B3或7C5D5或88函数在上的图象大致为( )ABCD9已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为( )ABCD10在中,分别为,的中点,为上的任一点,实数,满足,设、的面积分别为、,记(),则取到最大值时,的值为( )A1B1CD11若等差数列的前项和为,且,则的值为( )A21B
3、63C13D8412已知函数,则函数的图象大致为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设P为有公共焦点的椭圆与双曲线的一个交点,且,椭圆的离心率为,双曲线的离心率为,若,则_.14在中,已知,则的最小值是_15两光滑的曲线相切,那么它们在公共点处的切线方向相同如图所示,一列圆 (an0,rn0,n=1,2)逐个外切,且均与曲线y=x2相切,若r1=1,则a1=_,rn=_16设为数列的前项和,若,且,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,,使得对任意两个不等的正实数,都有恒成立.(1)求的解析式;(2)若方程有两个
4、实根,且,求证:.18(12分)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶若幸福度不低于8.5分,则称该人的幸福度为“很幸福”()求从这18人中随机选取3人,至少有1人是“很幸福”的概率;()以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“很幸福”的人数,求的分布列及19(12分)已知椭圆的上顶点为,圆与轴的正半轴交于点,与有且仅有两个交点且都在轴上,(为坐标原点).(1)求椭圆的方程;(2
5、)已知点,不过点且斜率为的直线与椭圆交于两点,证明:直线与直线的斜率互为相反数.20(12分)对于很多人来说,提前消费的认识首先是源于信用卡,在那个工资不高的年代,信用卡绝对是神器,稍微大件的东西都是可以选择用信用卡来买,甚至于分期买,然后慢慢还!现在银行贷款也是很风靡的,从房贷到车贷到一般的现金贷信用卡“忽如一夜春风来”,遍布了各大小城市的大街小巷为了解信用卡在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了100人进行抽样分析,得到如下列联表(单位:人)经常使用信用卡偶尔或不用信用卡合计40岁及以下15355040岁以上203050合计3565100(1)根据
6、以上数据,能否在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关?(2)现从所抽取的40岁及以下的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出4人赠送积分,求选出的4人中至少有3人偶尔或不用信用卡的概率;将频率视为概率,从市所有参与调查的40岁以上的网民中随机抽取3人赠送礼品,记其中经常使用信用卡的人数为,求随机变量的分布列、数学期望和方差参考公式:,其中参考数据:0.150.100.050.0250.0102.0722.7063.8415.0246.63521(12分)如图,三棱台的底面是正三角形,平面平面,.(1)求证
7、:;(2)若,求直线与平面所成角的正弦值.22(10分)已知函数.(1)求不等式的解集;(2)若关于的不等式在上恒成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】试题分析:设公差为或(舍),故选A.考点:等差数列及其性质.2、A【解析】利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解【详解】,得,故选:【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题3、B【解析】首先将五天进行分组,再对名著进行分配,根据分步乘法计数原理求得结果
8、.【详解】将周一至周五分为组,每组至少天,共有:种分组方法;将四大名著安排到组中,每组种名著,共有:种分配方法;由分步乘法计数原理可得不同的阅读计划共有:种本题正确选项:【点睛】本题考查排列组合中的分组分配问题,涉及到分步乘法计数原理的应用,易错点是忽略分组中涉及到的平均分组问题.4、A【解析】根据复数相等的特征,求出和,再利用复数的模公式,即可得出结果.【详解】因为,所以,解得则.故选:A.【点睛】本题考查相等复数的特征和复数的模,属于基础题.5、A【解析】画出约束条件的可行域,利用目标函数的最值,判断a的范围即可【详解】作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大
9、值,则,即.故选:A【点睛】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键6、A【解析】根据分段函数直接计算得到答案.【详解】因为所以.故选:.【点睛】本题考查了分段函数计算,意在考查学生的计算能力.7、B【解析】根据函数的对称轴以及函数值,可得结果.【详解】函数,若,则的图象关于对称,又,所以或,所以的值是7或3.故选:B.【点睛】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题8、A【解析】首先判断函数的奇偶性,再根据特殊值即可利用排除法解得;【详解】解:依题意,故函数为偶函数,图象关于轴对称,排除C;而,排除B;,排除D.故选:.【点睛】本题考查函
10、数图象的识别,函数的奇偶性的应用,属于基础题.9、D【解析】将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,是增函数;当时,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,是增函数;当时,是减函数.因此.设,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,
11、即,解得.由,即,所以.因为,所以,代入,得.设,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.【点睛】本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题10、D【解析】根据三角形中位线的性质,可得到的距离等于的边上高的一半,从而得到,由此结合基本不等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果.【详解】如图所示:因为是的中位线,所以到的距离等于的边上高的一半,所以,由此可得,当且仅当时,即为的中点时,等号成立,所以,由平行四边形法则可得,将以
12、上两式相加可得,所以,又已知,根据平面向量基本定理可得,从而.故选:D【点睛】本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.11、B【解析】由已知结合等差数列的通项公式及求和公式可求,然后结合等差数列的求和公式即可求解【详解】解:因为,所以,解可得,则故选:B【点睛】本题主要考查等差数列的通项公式及求和公式的简单应用,属于基础题12、A【解析】用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像.【详解】设,由于,排除B选项;由于,所以,排除C选项;由于当时,排除D选项.故A选项正确.故选:A
13、【点睛】本题考查了函数图像的性质,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设根据椭圆的几何性质可得,根据双曲线的几何性质可得,,即故答案为14、【解析】分析:可先用向量的数量积公式将原式变形为:,然后再结合余弦定理整理为,再由cosC的余弦定理得到a,b的关系式,最后利用基本不等式求解即可.详解:已知,可得,将角A,B,C的余弦定理代入得,由,当a=b时取到等号,故cosC的最小值为.点睛:考查向量的数量积、余弦定理、基本不等式的综合运用,能正确转化是解题关键.属于中档题.15、 【解析】第一空:将圆与联立,利用计算即可;第二空:找到两外切的圆的圆心与半径的关
14、系,再将与联立,得到,与结合可得为等差数列,进而可得.【详解】当r1=1时,圆,与联立消去得,则,解得;由图可知当时,将与联立消去得,则,整理得,代入得,整理得,则.故答案为:;.【点睛】本题是抛物线与圆的关系背景下的数列题,关键是找到圆心和半径的关系,建立递推式,由递推式求通项公式,综合性较强,是一道难度较大的题目.16、【解析】由题可得,解得,所以,上述两式相减可得,即,因为,所以,即,所以数列是以为首项,为公差的等差数列,所以三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)根据题意,在上单调递减,求导得,分类讨论的单调性,结合题
15、意,得出的解析式;(2)由为方程的两个实根,得出,两式相减,分别算出和,利用换元法令和构造函数,根据导数研究单调性,求出,即可证出结论.【详解】(1)根据题意,对任意两个不等的正实数,都有恒成立.则在上单调递减,因为,当时,在内单调递减.,当时,由,有,此时,当时,单调递减,当时,单调递增,综上,所以. (2)由为方程的两个实根,得,两式相减,可得, 因此,令,由,得, 则,构造函数.则,所以函数在上单调递增,故,即, 可知,故,命题得证.【点睛】本题考查利用导数研究函数的单调性求函数的解析式、以及利用构造函数法证明不等式,考查转化思想、解题分析能力和计算能力.18、 (). ()见解析.【解
16、析】()人中很幸福的有人,可以先计算其逆事件,即人都认为不很幸福的概率,再用减去人都认为不很幸福的概率即可;()根据题意,随机变量,列出分布列,根据公式求出期望即可【详解】()设事件抽出的人至少有人是“很幸福”的,则表示人都认为不很幸福()根据题意,随机变量,的可能的取值为;所以随机变量的分布列为:所以的期望【点睛】本题考查了离散型随机变量的概率分布列,数学期望的求解,概率分布中的二项分布问题,属于常规题型19、(1)(2)证明见解析【解析】(1)根据条件可得,进而得到,即可得到椭圆方程;(2)设直线的方程为,联立,分别表示出直线和直线斜率,相加利用根与系数关系即可得到.【详解】解:(1)圆与
17、有且仅有两个交点且都在轴上,所以,又,解得,故椭圆的方程为;(2)设直线的方程为,联立,整理可得,则,解得,设点,则,所以,故直线与直线的斜率互为相反数.【点睛】本题考查直线与椭圆的位置关系,涉及椭圆的几何性质,关键是求出椭圆的标准方程,属于中档题20、(1)不能在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关;(2);分布列见解析,【解析】(1)计算再对照表格分析即可.(2)根据分层抽样的方法可得经常使用信用卡的有人,偶尔或不用信用卡的有人,再根据超几何分布的方法计算3人或4人偶尔或不用信用卡的概率即可.利用二项分布的特点求解变量的分布列、数学期望和方差即可.【详解】(1)
18、由列联表可知,因为,所以不能在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关.(2)依题意,可知所抽取的10名40岁及以下网民中,经常使用信用卡的有(人),偶尔或不用信用卡的有(人).则选出的4人中至少有3人偶尔或不用信用卡的概率.由列联表,可知40岁以上的网民中,抽到经常使用信用卡的频率为,将频率视为概率,即从市市民中任意抽取1人,恰好抽到经常使用信用卡的市民的概率为.由题意得,则,.故随机变量的分布列为:0123故随机变量的数学期望为,方差为.【点睛】本题主要考查了独立性检验以及超几何分布与二项分布的知识点,包括分类讨论以及二项分布的数学期望与方差公式等.属于中档题.21
19、、()见证明;()【解析】()取的中点为,连结,易证四边形为平行四边形,即,由于,为的中点,可得到,从而得到,即可证明平面,从而得到;()易证,两两垂直,以,分别为,轴,建立如图所示的空间直角坐标系,求出平面的一个法向量为,设与平面所成角为,则,即可得到答案【详解】解:()取的中点为,连结.由是三棱台得,平面平面,从而.,四边形为平行四边形,.,为的中点,.平面平面,且交线为,平面,平面,而平面,.()连结.由是正三角形,且为中点,则.由()知,平面,两两垂直.以,分别为,轴,建立如图所示的空间直角坐标系.设,则,.设平面的一个法向量为.由可得,.令,则,.设与平面所成角为,则.【点睛】本题考查了空间几何中,面面垂直的性质,线线垂直的证明,及线面角的求法,考查了学生的逻辑推理能力与计算求解能力,属于中档题22、(1)或; (2).【解析】(1)利用绝对值的几何意义,将不等式,转化为不等式或或求解.(2)根据-2在R上恒成立,由绝对值三角不等式求得的最小值即可.【详解】(1)原不等式等价于或或,解得:或,不等式的解集为或.(2)因为-2在R上恒成立,而,所以,解得,所以实数的取值范围是.【点睛】本题主要考查绝对值不等式的解法和不等式恒成立问题,还考查了运算求解的能力,属于中档题.