《上海市徐汇区2022-2023学年高三第四次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《上海市徐汇区2022-2023学年高三第四次模拟考试数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若则该双曲线的离心率为A2B3CD2已
2、知双曲线 (a0,b0)的右焦点为F,若过点F且倾斜角为60的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是( )AB(1,2),CD3若,则实数的大小关系为( )ABCD4若直线不平行于平面,且,则( )A内所有直线与异面B内只存在有限条直线与共面C内存在唯一的直线与平行D内存在无数条直线与相交5已知函数,若恒成立,则满足条件的的个数为( )A0B1C2D36已知全集,函数的定义域为,集合,则下列结论正确的是ABCD7已知函数且,则实数的取值范围是( )ABCD8展开式中x2的系数为( )A1280B4864C4864D12809圆柱被一平面截去一部分所得几何体的三视
3、图如图所示,则该几何体的体积为( ) ABCD10已知若(1-ai )( 3+2i )为纯虚数,则a的值为 ( )ABCD11某装饰公司制作一种扇形板状装饰品,其圆心角为120,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( )A58厘米B63厘米C69厘米D76厘米12已知函数,若,且 ,则的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13等差数列(公差不为0),其中,成等比数列,则这个等比数列的公比为_.14已知实数,对任意,有,且,则_.15如图,从
4、一个边长为的正三角形纸片的三个角上,沿图中虚线剪出三个全等的四边形,余下部分再以虚线为折痕折起,恰好围成一个缺少上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱柱的上底,则所得正三棱柱的体积为_.16曲线f(x)=(x2 +x)lnx在点(1,f(1)处的切线方程为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知中,角所对边的长分别为,且(1)求角的大小;(2)求的值.18(12分)(某工厂生产零件A,工人甲生产一件零件A,是一等品、二等品、三等品的概率分别为,工人乙生产一件零件A,是一等品、二等品、三等品的概率分别为己知生产一件一等品、二等品、三
5、等品零件A给工厂带来的效益分别为10元、5元、2元.(1)试根据生产一件零件A给工厂带来的效益的期望值判断甲乙技术的好坏;(2)为鼓励工人提高技术,工厂进行技术大赛,最后甲乙两人进入了决赛决赛规则是:每一轮比赛,甲乙各生产一件零件A,如果一方生产的零件A品级优干另一方生产的零件,则该方得分1分,另一方得分-1分,如果两人生产的零件A品级一样,则两方都不得分,当一方总分为4分时,比赛结束,该方获胜Pi+4(i=4,3,2,4)表示甲总分为i时,最终甲获胜的概率写出P0,P8的值;求决赛甲获胜的概率19(12分)已知函数,的最大值为求实数b的值;当时,讨论函数的单调性;当时,令,是否存在区间,使得
6、函数在区间上的值域为?若存在,求实数k的取值范围;若不存在,请说明理由20(12分)已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求的取值范围;(2)若函数在区间上恰有3个零点,且,求的取值范围.21(12分)已知函数(1)求函数在处的切线方程(2)设函数,对于任意,恒成立,求的取值范围.22(10分)如图,己知圆和双曲线,记与轴正半轴、轴负半轴的公共点分别为、,又记与在第一、第四象限的公共点分别为、.(1)若,且恰为的左焦点,求的两条渐近线的方程;(2)若,且,求实数的值;(3)若恰为的左焦点,求证:在轴上不存在这样的点,使得.参考答案一、选择题:本题共12小题,每小题5
7、分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】本题首先可以通过题意画出图像并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果。【详解】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,即,因为圆的半径为,是圆的半径,所以,因为,所以,三角形是直角三角形,因为,所以,即点纵坐标为,将点纵坐标带入圆的方程中可得,解得,将点坐标带入双曲线中可得,化简得,故选D。【点睛】本题考查了圆锥曲线的相关性质,主要
8、考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题。2、A【解析】若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率根据这个结论可以求出双曲线离心率的取值范围【详解】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,离心率,故选:【点睛】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件3、A【解析】将化成以 为底的对数,即可判断 的大小关系;由对数函数、指数函数的性质,可判断出 与1的大小关系,从而可判
9、断三者的大小关系.【详解】依题意,由对数函数的性质可得.又因为,故.故选:A.【点睛】本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断大小;若真数和底数都不相同,则可与中间值如1,0比较大小.4、D【解析】通过条件判断直线与平面相交,于是可以判断ABCD的正误.【详解】根据直线不平行于平面,且可知直线与平面相交,于是ABC错误,故选D.【点睛】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.5、C【解析】由不等式恒成立问题分
10、类讨论:当,当,当,考查方程的解的个数,综合得解【详解】当时,满足题意,当时,故不恒成立,当时,设,令,得,得,下面考查方程的解的个数,设(a),则(a)由导数的应用可得:(a)在为减函数,在,为增函数,则(a),即有一解,又,均为增函数,所以存在1个使得成立,综合得:满足条件的的个数是2个,故选:【点睛】本题考查了不等式恒成立问题及利用导数研究函数的解得个数,重点考查了分类讨论的数学思想方法,属难度较大的题型.6、A【解析】求函数定义域得集合M,N后,再判断【详解】由题意,故选A【点睛】本题考查集合的运算,解题关键是确定集合中的元素确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函
11、数的值域,是不等式的解集还是曲线上的点集,都由代表元决定7、B【解析】构造函数,判断出的单调性和奇偶性,由此求得不等式的解集.【详解】构造函数,由解得,所以的定义域为,且,所以为奇函数,而,所以在定义域上为增函数,且.由得,即,所以.故选:B【点睛】本小题主要考查利用函数的单调性和奇偶性解不等式,属于中档题.8、A【解析】根据二项式展开式的公式得到具体为:化简求值即可.【详解】根据二项式的展开式得到可以第一个括号里出项,第二个括号里出项,或者第一个括号里出,第二个括号里出,具体为: 化简得到-1280 x2故得到答案为:A.【点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特
12、定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.9、B【解析】三视图对应的几何体为如图所示的几何体,利用割补法可求其体积.【详解】根据三视图可得原几何体如图所示,它是一个圆柱截去上面一块几何体,把该几何体补成如下图所示的圆柱,其体积为,故原几何体的体积为. 故选:B.【点睛】本题考查三视图以及不规则几何体的体积,复原几何体时注意三视图中的点线关系与几何体中的点、线、面的对应关系,另外,不规则几何体的体积可用割补法来求其体积,本题属于基础题.10、A【解析】根据复数的乘法运算法则化
13、简可得,根据纯虚数的概念可得结果.【详解】由题可知原式为,该复数为纯虚数,所以.故选:A【点睛】本题考查复数的运算和复数的分类,属基础题.11、B【解析】由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【详解】因为弧长比较短的情况下分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,故导线长度约为63(厘米).故选:B.【点睛】本题主要考查了扇形弧长的计算,属于容易题.12、A【解析】分析:作出函数的图象,利用消元法转化为关于的函数,构造函数求得函数的导数,利用导数研究函数的单调性与最值,即可得到结论.详解:作出函数的图象,如图所示,若,且,则当时,
14、得,即,则满足,则,即,则,设,则,当,解得,当,解得,当时,函数取得最小值,当时,;当时,所以,即的取值范围是,故选A.点睛:本题主要考查了分段函数的应用,构造新函数,求解新函数的导数,利用导数研究新函数的单调性和最值是解答本题的关键,着重考查了转化与化归的数学思想方法,以及分析问题和解答问题的能力,试题有一定的难度,属于中档试题.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】根据等差数列关系,用首项和公差表示出,解出首项和公差的关系,即可得解.【详解】设等差数列的公差为,由题意得: ,则整理得,所以故答案为:4【点睛】此题考查等差数列基本量的计算,涉及等比中项,考查基本计
15、算能力.14、-1【解析】由二项式定理及展开式系数的求法得,又,所以,令得:,所以,得解【详解】由,且,则,又,所以,令得:,所以,故答案为:【点睛】本题考查了二项式定理及展开式系数的求法,意在考查学生对这些知识的理解掌握水平15、1【解析】由题意得正三棱柱底面边长6,高为,由此能求出所得正三棱柱的体积【详解】如图,作,交于,由题意得正三棱柱底面边长,高为,所得正三棱柱的体积为:故答案为:1【点睛】本题考查立体几何中的翻折问题、正三棱柱体积的求法、三棱柱的结构特征等基础知识,考查空间想象能力、运算求解能力,求解时注意翻折前后的不变量16、【解析】求函数的导数,利用导数的几何意义即可求出切线方程
16、.【详解】解:,则,又,即切点坐标为(1,0),则函数在点(1,f(1)处的切线方程为,即,故答案为:.【点睛】本题主要考查导数的几何意义,根据导数和切线斜率之间的关系是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)正弦定理的边角转换,以及两角和的正弦公式展开,特殊角的余弦值即可求出答案;(2)构造齐次式,利用正弦定理的边角转换,得到,结合余弦定理 得到【详解】解:(1)由已知,得又,因为 得.(2)又由余弦定理,得【点睛】1.考查学生对正余弦定理的综合应用;2.能处理基本的边角转换问题;3.能利用特殊的三角函数值推特殊角,属
17、于中档题18、(1)乙的技术更好,见解析(2),;【解析】(1)列出分布列,求出期望,比较大小即可;(2)直接根据概率的意义可得P0,P8;设每轮比赛甲得分为,求出每轮比赛甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差数列,根据可得答案.【详解】(1)记甲乙各生产一件零件给工厂带来的效益分别为元、元,随机变量,的分布列分别为10521052所以,所以,即乙的技术更好(2)表示的是甲得分时,甲最终获胜的概率,所以,表示的是甲得4分时,甲最终获胜的概率,所以;设每轮比赛甲得分为,则每轮比赛甲得1分的概率,甲得0分的概率,甲得分的概率, 所以甲得时,最终获胜有以下三种情况:(1)下
18、一轮得1分并最终获胜,概率为;(2)下一轮得0分并最终获胜,概率为;(3)下一轮得分并最终获胜,概率为;所以,所以是等差数列,则,即决赛甲获胜的概率是.【点睛】本题考查离散型随机变量的分布列和期望,考查数列递推关系的应用,是一道难度较大的题目.19、 (1) ;(2) 时,在单调增;时, 在单调递减,在单调递增;时,同理在单调递减,在单调递增;(3)不存在.【解析】分析:(1)利用导数研究函数的单调性,可得当时, 取得极大值,也是最大值,由,可得结果;(2)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(3)假设存在区间,使得函数在区间
19、上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根,进而可得结果.详解:(1) 由题意得,令,解得,当时, ,函数单调递增;当时, ,函数单调递减.所以当时, 取得极大值,也是最大值,所以,解得. (2)的定义域为. 即,则,故在单调增若,而,故,则当时,; 当及时,故在单调递减,在单调递增若,即,同理在单调递减,在单调递增(3)由(1)知, 所以,令,则对恒成立,所以在区间内单调递增, 所以恒成立,所以函数在区间内单调递增. 假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根, 即方程在区间内是否存在两个不相等的实根,令, ,则
20、,设, ,则对恒成立,所以函数在区间内单调递增, 故恒成立,所以,所以函数在区间内单调递增,所以方程在区间内不存在两个不相等的实根.综上所述,不存在区间,使得函数在区间上的值域是.点睛:本题主要考查利用导数判断函数的单调性以及函数的最值值,属于难题.求函数极值、最值的步骤:(1) 确定函数的定义域;(2) 求导数 ;(3) 解方程 求出函数定义域内的所有根;(4) 列表检查 在 的根 左右两侧值的符号,如果左正右负(左增右减),那么 在 处取极大值,如果左负右正(左减右增),那么 在 处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的
21、函数值与极值的大小.20、(1);(2).【解析】(1)求出,再求恒成立,以及恒成立时,的取值范围;(2)由已知,在区间内恰有一个零点,转化为在区间内恰有两个零点,由(1)的结论对分类讨论,根据单调性,结合零点存在性定理,即可求出结论.【详解】(1)由题意得,则,当函数在区间上单调递增时,在区间上恒成立.(其中),解得.当函数在区间上单调递减时,在区间上恒成立,(其中),解得.综上所述,实数的取值范围是.(2).由,知在区间内恰有一个零点,设该零点为,则在区间内不单调.在区间内存在零点,同理在区间内存在零点.在区间内恰有两个零点.由(1)易知,当时,在区间上单调递增,故在区间内至多有一个零点,
22、不合题意.当时,在区间上单调递减,故在区间内至多有一个零点,不合题意,.令,得,函数在区间上单凋递减,在区间上单调递增.记的两个零点为,必有.由,得.又,.综上所述,实数的取值范围为.【点睛】本题考查导数的综合应用,涉及到函数的单调性、零点问题,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.21、(1);(2)【解析】(1)求出,即可求出切线的点斜式方程,整理即可;(2)的取值范围满足,求出,当时求出,的解,得到单调区间,极小值最小值即可.【详解】(1)由于,此时切点坐标为所以切线方程为. (2)由已知,故.由于,故,设由于在单调递增同时时,时,故存在使得且当时,当时,所以当时,当时,
23、所以当时,取得极小值,也是最小值,故由于,所以,.【点睛】本题考查导数的几何意义、不等式恒成立问题,应用导数求最值是解题的关键,考查逻辑推理、数学计算能力,属于中档题.22、(1);(2);(2)见解析【解析】(1)由圆的方程求出点坐标,得双曲线的,再计算出后可得渐近线方程;(2)设,由圆方程与双曲线方程联立,消去后整理,可得,由先求出,回代后求得坐标,计算;(3)由已知得,设,由圆方程与双曲线方程联立,消去后整理,可解得,求出,从而可得,由,可知满足要求的点不存在【详解】(1)由题意圆方程为,令得,即,渐近线方程为(2)由(1)圆方程为,设,由得,(*),所以,即,解得,方程(*)为,即,代入双曲线方程得,在第一、四象限,(3)由题意,设由得:,由得,解得,所以,当且仅当三点共线时,等号成立,轴上不存在点,使得【点睛】本题考查求渐近线方程,考查圆与双曲线相交问题考查向量的加法运算,本题对学生的运算求解能力要求较高,解题时都是直接求出交点坐标难度较大,属于困难题